PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(Second Semester)

Branch - STATISTICS

PROBABILITY & DISTRIBUTIONS-I

Time: Three Hours Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 1 = 10)$

The chance that a leap year selected at random will contain 53 Sundays is 1 (i) 5/7(ii) 2/7

(iii) 1/7 (iv) 3/7

2 For any 2 events A and B, if $B \subset A$ then $P(A \cap \overline{B})$ is equal to

(ii) P(A) + P(B)P(A) - P(B)(i) (iii) P(A) P(B)(iv) P(A)/P(B)

3 The mathematical expression for computing the expected value of a continuous random variable with p.d.f f(x) is

(ii) $\int_{0}^{\infty} f(x)dx$ (iv) $\int_{0}^{1} x f(x)dx$

If F is the distribution function of the random variable X and if a < b, then 4 $P(a < x \le b)$ is equal to

(i) F(b)/F(a)

(ii) F(b) F(a)

(iii) F(b) + F(a)

(iv) F(b) - F(a)

5 Mean of Bernoulli distribution with parameter 'P' is

(i) P

(ii) P^2

(iii) P³

(iv) P^4

The conditional probability density function of X given Y is defined by 6

 $g(y/x) = \frac{f(x,y)}{h(y)}, h(y) > 0$ (ii) $g(x/y) = \frac{f(x,y)}{h(y)}, h(y) > 0$

(iii) g(y) = f(x, y)

(iv) g(x) = f(x, y)

If X is a random variable having probability function f(x), then the function 7 $\sum e^{itx} f(x)$, for 'i' to be an imaginary unit, is known as

(i) Moment generating function (ii) Probability generating function

(iii) Cumulant generating function (iv) Characteristic function

8 Let $M_X(t)$ be the moment generating function of a random variable X, then subject to the convergence of the expansion of $\log M_X(t)$ in the powers of t, then function : $K_X(t) = \log_e M_X(t)$ is known as

Maclaurin's expansion function (ii) Probability distribution function

(iii) Moment generating function (iv) Cumulant generating function

- 9 The expected value of X is equal to the expectation of the conditional expectation of X given Y, symbolically is
 - (i) E(X) = E[E[X/Y]]
- (ii) E(X) = E(Y)
- (iii) E(X) = E[X/Y]
- (iv) E(X) = E[E[Y]]
- 10 If the cumulative distribution function of a continuous random variable X is F(x), then the cumulative distribution function of Y = X + a is.
 - (i) F(x+a)

(ii) F(x-a)

(iii) F(x)

(iv) a.F(x)

SECTION - B (25 Marks)

Answer ALL questions

ALL questions carry **EQUAL** Marks $(5 \times 5 = 25)$

State and prove addition theorem on probability.

b The probabilities of 3 students A. B C solving a problem in statistics are ½, $\frac{1}{3}$, $\frac{1}{4}$. A problem is given to all the 3 students. What is the probability that (i) No one will solve the problem (ii) Only one will solve the problem (iii) Atleast one will solve the problem?

12 a A random variable X has the following probability function:

	X	:	- 0	1	2	3	4	5	6	7
į	P(x)		0	K	2K	2K	3K	K ²	$2K^2$	$7K^2 + K$

(I) Find K (ii) P(X < 6).

OR

- b A coin is tossed until a head appears. What is the expectation of the number of tosses?
- 13 a Given the joint p.d.f of (X, Y) as $f(x, y) = \begin{cases} \frac{K}{(1+x+y)^3}, & x>0, y>0\\ \frac{K}{(1+x+y)^3}, & \text{otherwise} \end{cases}$, Find K.

Test whether X and Y are independent random variables given that $f(x,y) = \begin{cases} 4xy & 0 < x < 1, 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$

14 a Prove that sum of two independent random variable is equal to the product of their moment generating function.

- b State the prove Bernoulli's weak law of large numbers.
- 15 a If X and Y are independent, prove that E[X / Y] = E[X].

OR

b Let (X, Y) be a two dimensional continuous random variable with f(x,y) = 8xy, 0 < y < x < 1, find E[Y/X].

SECTION -C (40 Marks)

Answer ALL questions

ALL questions carry **EQUAL** Marks $(5 \times 8 = 40)$

16 a State and prove Baye's theorem.

The first of three urns contains 7 white and 10 black balls, the second contains 5 white and 12 black balls and the third contains 17 white balls and no black balls. A person urn at random and draws a ball from it. The ball is white. Find the probabilities that the ball comes from (i) the first urn and (ii) the second urn.

Cont

17 a Given the following bivariate probability distribution, obtain (i) marginal distribution of X and Y (ii) Conditional distribution of X when Y = 2.

L a L unitu	(11)	arsarouti	
↓ Y	-1	0	1
$\frac{\lambda \rightarrow}{0}$	1/15	2/15	1/15
1	3/15	2/15	1/15
2	2/15	1/15	2/15
L			

OR

- b Define cumulative distribution function. Prove any two properties of distribution function.
- 18 a For the joint distribution:

$$f(x, y) = \begin{cases} \frac{9}{4} - x - y & 0 \le x \le 2, \ 0 \le y \le 2 \\ 0 & \text{elsewhere} \end{cases}$$

Obtain the marginal and conditional distribution of X given Y.

OR

- b Explain Bivariate distribution.
- 19 a State and prove Tchebychev's inequality.

OR

- b Explain weak law of large numbers.
- 20 a Given the joint density function of X and Y is $f(x,y) = \begin{cases} \frac{1}{2}xe^{-y}, & 0 < x < 2, & y > 0 \\ 0, & \text{otherwise} \end{cases}$, find the distribution of X + Y.

OR

b Explain transformation of variables with an example.

Z-Z-Z

END