PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(Third Semester)

Branch - STATISTICS

PROBABILITY DISTRIBUTIONS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer **ALL** questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 Define moment generating function.
- 2 State the central limit theorem for i.i.d random variables.
- 3 State the independence of two random variable.
- 4 Define conditional expectation.
- 5 State the additive property of poisson distribution.
- 5 Define multinomial distribution.
- 7 Define exponential distribution.
- 8 Define normal distribution.
- 9 Define F-distribution.
- Write any two applications of chi-square distribution.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a Define characteristic function and state its properties.

OR

- b A symmetric die is thrown 600 times. Find the lower bound for the probability of getting 80 to 120 sixes.
- A two dimensional random variable (x, y) have a bivariate distribution given by, $P(X = x, Y = y) = \frac{x^2 + y}{32}$ for x = 0, 1, 2, 3 and y = 0, 1. Find the marginal distributions of x on y.

OR

b If x and y are two random variables having joint density function:

$$f(x, y) = \begin{cases} \frac{1}{8}(6 - x - y); & 0 \le x \le 2, \ 2 \le y \le 4 \\ 0; & \text{otherwise} \end{cases}$$
find (i) $P(x < 1 \text{ n } y < 3)$, (ii) $P(x + y < 3)$ and (iii) $P(x < 1 / y < 3)$.

13 a Obtain the m.g.f of binomial distribution and hence find its mean and variable.

OR

- b Obtain the mean and variance of geometric distribution.
- 14 a Obtain the median of normal distribution.

OR

b Obtain the limiting form of Gamma distribution.

Cont

- What are the applications of 't' distribution?
 - b Define chi-square distribution.

SECTION - C (30 Marks)

Answer any THREE Questions
ALL Questions Carry EQUAL Marks (3 x 10 = 30)

- 16 State and prove Tchebycher's inequality.
- A two dimensional random variable (x, y) have a joint probability mass function: $p(x, y) = \frac{1}{27}(2x + y)$ where x and y assume only the integer values 0, 1 and 2. Find the conditional distribution of y for x = x.
- Obtain the recurrence relation for the moments of poisson distribution.
- Find the mean and variance of beta distribution of first kind.
- 20 Establish the relationship between F and chi-square distributions.

Z-Z-Z

END