PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(First Semester)

Branch - STATISTICS

MATRICES

Time: Three Hours

Maximum: 75 Merks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

- 1 What is order of a matrix?
- 2 Define scalar matrix.
- Find the determinant of $A = \begin{bmatrix} -2 & 1 \\ 7 & 6 \end{bmatrix}$.
 - 4 Define determinant of order 2.
 - 5 Define rank of a matrix.
 - Write any two elementary transformations of a matrix.
 - 7 State Cayley Hamilton theorem.
 - 8 Define characteristic vector.
 - 9 When two vectors are said to be equal?
 - 10 Define linearly independent set of vectors.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a Define symmetric and skew symmetric matrices.

OR

- b Show that the determinant of a Hermitian matrix is always a real number.
- 12 a Find the value of the determinant : $\begin{vmatrix} 3 & 4 & 7 \\ 2 & 1 & 3 \\ 7 & 2 & 1 \end{vmatrix}$.

OR

b What are the properties of determinants?

13 a Find the rank of
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$
.

- b How to compute an inverse?
- 14 a Show that 0 is a characteristic root of a matrix if and only if the matrix is singular.

OR

- b Explain matrix polynomial.
- 15 a Show that the vectors $X_1 = (1, 2, 4)$, $X_2 (3, 6, 12)$ are linearly dependent.
 - Prove that the quadratic form $6x_1^2 + 3x_2^2 + 3x_3^2 4x_1x_2 2x_2x_3 + 4x_3x_1$ in three variables is positive definite.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry EQUAL Marks $(3 \times 10 = 30)$

- Define Skew-Hermitian matrix. If A is a Hermitian matrix, show that iA is skew Hermitian.
- 17 Solve the following equation by Cramer's rule:

$$2x - y + 3z = 9$$

$$x \pm y \pm z = 6$$

$$x-y+z=2$$

- Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$ by using elementary transformations.
- Find the characteristics equation of the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and verify that it is satisfied by A and hence obtain A^{-1} .
- Obtain the matrices corresponding to the following quadratic forms:
 - (i) $x^2 + 2y^2 + 3z^2 + 4xy + 5yz + 6zx$
 - (ii) $ax^2 + by^2 + cz^2 + zfyz + zgzx + zhxy$

Z-Z-Z

END