1451 621

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(Sixth Semester)

Branch - STATISTICS

DESIGN OF EXPERIMENTS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 Write any two basic assumption of ANOVA.
- 2 Define mean sum of squares.
- Write the linear model of C.R.D.
- 4 State any two advantages of R.B.D.
- 5 Define 2^3 factorial design.
- 6 Define 2^4 factorial design.
- What do you mean by confounding?
- 8 Define 3² experiment.
- 9 Define BIBD.
- Write down the linear model of split plot design.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a Explain the mathematical model of one-way classification.

OR

- b Distinguish between (a) Fixed effect model (b) Random effect model in the analysis of variance.
- 12 a Compare the efficiency of RBD relative to CRD.

OR

- b Explain the analysis of variance table in LSD.
- 13 a Explain the main effect and interaction effect in 2^2 experiment.

OR

- b Explain the Yates procedure of computing main and interaction effect table in a 2^3 factorial experiment.
- 14 a Bring out the layout of 3^2 factorial experiment.

OR

- b Explain the principle of confounding in factorial experiment.
- 15 a Establish relationships among its parameters of BIBD.

OR

b Describe a split plot experiment. How does it differ from RBD?

SECTION - C (30 Marks)

Answer any **THREE** Questions

ALL Questions Carry EQUAL Marks $(3 \times 10 = 30)$

- Bring out the analysis of two-way classification.
- Describe the principles of randomization a' replication and mention their uses.
- Explain fully the analysis of 2³ factorial experiment.
- Explain the analysis of 2^3 confounding design.
- 20 "Split plot designs are sometimes referred to as factorial designs with main effects confounded" Discuss.

7-7-7

EVID