PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(Fourth Semester)

Branch - STATISTICS

BASIC SAMPLING THEORY

Time: Three Hours Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks $(10 \times 2 = 20)$

- 1 Define Standard error.
- What is meant by Sampling frame?
- What do you understand by random sampling?
- 4 Which factors are responsible for size of a sample?
- 5 Define Stratum.
- 6 What is proportional allocation?
- When do you recommend systematic sampling?
- 8 State the disadvantages of Systematic Sampling.
- 9 Write the variance of Cluster Sampling.
- 10 Define Ratio Estimator.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a State the limitations of Sample Survey.

OF

- b Distinguish between Sampling and Non-Sampling errors.
- 12 a Estimate the sample size of SRS with specified coefficient of dispersion.
 - b State the merits and demerits of Simple random sampling.
- 13 a Show that in Stratified random sampling $E(\overline{y}_{st}) = \overline{Y}n$.

OR

- b State the advantages of Stratified random sampling.
- 14 a Show that in Systematic sampling $Var(\overline{y}_{sys}) = \frac{nk-1}{nk} \cdot \frac{s^2}{n} \{1 + (n-1)p\}$ where p is the intra correlation coefficient.

OR

- b Compare the efficiency of systematic sampling Vs stratified random sampling.
- 15 a Define cluster sampling. In what situation the cluster sampling be preferred?

 OR
 - b Explain the concept of regression estimator.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry **EQUAL** Marks $(3 \times 10 = 30)$

Discuss the principle steps in a sample survey.

Prove that, in SRSWOR
$$V(\overline{y}_n) = \left(\frac{1}{n} - \frac{1}{N}\right) s^2 = \frac{N-n}{N} \cdot \frac{s^2}{n}$$

- 18 Show that $Var(\overline{y}_{st})_{prop} \leq Var(\overline{y}_n)_{ran}$.
- If the population consists of a linear trend $y_i=i$, i=1,2...k, then prove that $Var(\overline{y}_{st}) \le Var(\overline{y}_{sys}) \le Var(\overline{y}_n)_R$.
- 20 Describe two-stage sampling with respect to SRS.