PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(First Semester)

Branch - PHYSICS

Time:	Three Hours	EMATICS-I Maximum: 75 Marks
	Answer A	-A (10 Marks) LL questions carry EQUAL marks (10 x 1 = 10)
1	The roots of f(x)=0 may not all be (i) real (iii) open	(ii) closed (iv) none of the above
2	All reciprocal equations may be requations with signs. (i) equal (iii) like	educed to an even degree reciprocal (ii) unequal (iv) unlike
3	The curvature is reciprocal of (i) its own equation (iii) centre	(ii) radius of curvature (iv) none of the above
4	The locus of the centre of curvature (i) radius of curvature (iii) involute	
5	If $f(x) = -f(-x)$ then $f(x)$ is said to (i) even (iii) constant	be (ii) odd (iv) none
6	$\int \frac{dx}{1+x^2} = \underline{\qquad}.$ (i) $\cot x + c$ (iii) $\tan^{-1} x + c$	(ii) $\cot^{-1} x + c$ (iv) $\tan x + c$
7	$\int_{a}^{b} f(x)dx = F(b) - F(a) \text{ is called}$ (i) algebra (iii) indefinite integral	(ii) polynomial(iv) definite integral
8	Evaluate $\iiint_{0}^{1} \iint_{0}^{2} (x + y + z) dx dy dz$	
	(i) 18 (iii) 20	(ii) 19/2 (iv) 17/2
9	$\cos h^2 x - \sin h^2 x = $ (i) 0 (iii) 1	(ii) -1 (iv) ∞

(ii) $2 \cos \theta$ (iv) $1-2 \sin^2 \theta$

10

 $\cos 2 \theta = \frac{1}{(i)} \cos \theta \sin \theta$

(iii) $1 + 2 \sin^2 \theta$

SECTION - B (25 Marks)

Answer **ALL** questions

ALL questions carry **EQUAL** Marks $(5 \times 5 = 25)$

- 11 a Sole the equation $x^4 4x^2 + 8x + 35 = 0$, given that $2 + i\sqrt{3}$ is a root of it.
 - b If α, β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, form the equation whose roots are $\alpha + \frac{1}{\beta \gamma}$, $\beta + \frac{1}{\gamma \alpha}$, $\gamma + \frac{1}{\alpha \beta}$.
- What is the radius of curvature of the curve $x^4 + y^4 = 2$ at the point (1, 1)? 12 a
 - Prove that the (P, r) equation of the cardioid $r = a(1 \cos \theta)$ is $p^2 = r^3 / 2a$
- 13 a Show that $\int_{-a}^{+a} f(x)dx = 2\int_{0}^{a} f(x)dx$, if f(x) is an even function of x.

OR

- b Calculate $\int x^3 \cos 2x dx$.
- 14 a Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

- b Find the volume bounded by the cylinder $x^2 + y^2 = 4$, the plane y + z = 4 and z = 0.
- 15 a Express $\frac{\sin 6\theta}{\sin \theta}$ in terms of $\cos \theta$.

OR

b Reduce $(\alpha + i\beta)^{x+iy}$ to the form A + iB.

SECTION -C (40 Marks)

Answer **ALL** questions

ALL questions carry **EQUAL** Marks $(5 \times 8 = 40)$

- 16 a Find the condition for the roots of the equation $x^3 + px^2 + qx + r = 0$ to be in geometric progression $3x^3 - 26x^2 + 52x - 24 = 0$. progression and hence solve the equation
 - OR b Solve the equation $2x^5 15x^4 + 37x^3 37x^2 + 15x 2 = 0$
- Show that the evolute of the cycloid $x = a(\theta \sin \theta)$; $y = a(1 \cos \theta)$ is 17 a another cycloid.

OR

Show that the radius of curvature of the curve $r^n = a^n \cos n\theta$ is $\frac{a^n r^{-n+1}}{n+1}$.

18 a Calculate
$$\int_{0}^{\pi} \theta \sin^{3} \theta d\theta$$
.

OR

b If
$$\int_{0}^{\pi/2} \cos^m x \cos nx dx = f(m,n)$$
, prove that $f(m, n) = \frac{m}{m+n}$ $f(m-1, n-1)$.
Hence prove that $f(n, n) = \frac{\pi}{2^{n+1}}$.

19 a Change the order of integration in the integral $\int_{0}^{a} \int_{x^2/a}^{2a-x} dx dy$ and evaluate it.

OR

- b A plane lamina of non-uniform density is in form of a quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. If the density at any point (x, y) be k, xy, where k is a constant, find the co-ordinates of the centroid of the lamina.
- 20 a Expand $\sin^3 \theta \cos^5 \theta$ in a series of sines of multiples of θ .

OR

b If $\sin (A + iB) = x + iy$, prove that

(i)
$$\frac{x^2}{\sin^2 A} - \frac{y^2}{\cos^2 A} = 1$$
 and (ii) $\frac{x^2}{\cosh^2 B} + \frac{y^2}{\sinh^2 B} = 1$

Z-Z-Z

END