PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(First Semester)

Branch - COMPUTER TECHNOLOGY

DIGITAL ELECTRONICS

Time:	Three Hours		Maximum: 75 Marks
	Answer	N-A (10 Marks) ALL questions carry EQUAL marks	$(10 \times 1 = 10)$
1	code is a Error correcting (i) ASCII (iii) Gray	code. (ii) Exess-3 (iv) Parity	
2	$(1010101010)_2 \rightarrow ()_{16}$ is (i) AAA (iii) 2AA	(ii) AA (iv) IAA	•
.3	A(AB+A) is (i) AB (iii) BA	(ii) A (iv) B	
4	is a universal gate. (i) NOR (iii) both (i) & (ii)	(ii) NAND (iv) AND	
5	A . $\overline{A} = $ (i) 1 (iii) 0	(ii) <u>A</u> (iv) A	
6)
7	Many inputs to 1 output is (i) Dm∪x		
8	2 bit addition can be carried out(i) Full adder(iii) Encoder	using (ii) Half adder (iv) Decoder	
9	Flip-Flop which is used to store (i) T (iii) JK	a data bit is F (ii) D (iv) RS	lip-flop.
10	A circuit which is used to count (i) counter (iii) timer	the clock pulses is call (ii) shift register (iv) register	ed as

Cont...

TION - B (35 Marks)

-		ALL Questions Carry EQUAL Marks (5 x 7 = 35)
11	a	Explain about Binary to Decimal and Decimal to Binary Conversion with example. OR
-	b	Discuss about Error Detecting and Error Correcting codes with example.
12	a	Explain the function of NOT Gate with the Truth Table. OR
	b	Describe about the Exclusive - OR Gate with Truth Table.
13	a	Simplify the Boolean function $F(A,B,C,D) = \Sigma(0,1,2,4,5,6.8,9.12.13,14)$. OR
	b	Discuss about Product of Sum simplifications with example.
14	a	Explain about The Full - Adder. OR
	b	Describe about the Floating Point Representation of Numbers with example.
15	a	Explain the working principles of JK Flip - Flop. OR
	b	Explain about the Shift Register.
		SECTION -C (40 Marks) Answer ALL questions ALL questions carry EQUAL Marks (5 x 8 = 40)
16	a	Analyze in detail about binary Subtraction with 1's, 2's, 9's and 10's complements. OR
	b	Elucidate on Binary number system. Convert the following to the given base.
		(i) $(7 \ 6 \ 5 \ 2)_{8}$ () ₁₀ , () ₂ . (2) (ii) $(F \ A \ F \ A)_{16}$ - () ₂ (2) (iii) $(1010110110110)_{2}$ () ₈ (2)
17	a	Differentiate between Positive Logic and Negative Logic. OR
	b	(i) NAND and NOR as Universal Gates – Justify. (4) (ii) List out the logic gates and explain with truth table and circuit diagram. (4)
18	a	Discuss in detail about Laws and Theorem of Boolean Algebra. OR
	b	Simplify the following: $(4 \times 2 = 8)$ (i) $F = xy + xyz + x^1yz + xy^1z^1 + xy + xyz$

(ii) F = x'y' + xy + xy' + x'y(iii) $F=x+yz+yz^1+y+xy$ (iv) F = x + yz + zy + x + y

Describe in detail about The functions of Decoder with a neat diagram. 19 a

- Design a $M \cup X$ and $DM \cup X$. $(1 \times 8 \& 8 \times 1)$
- Discuss about Master Slave Flip Flop. 20 a

Illustrate the waving of ripple counters with a circuit diagram and function table.