PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BCom DEGREE EXAMINATION MAY 2019

(Fourth Semester)

Branch - COMMERCE (BUSINESS ANALYTICS)

OPERATIONS RESEARCH

Time: Three Hours Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks $(10 \times 2 = 20)$

- 1 Define degenerate solution of LPP.
- 2 Define basic feasible solution of a linear programming problem.
- 3 Define unbalanced transportation problem.
- Write a note on mathematical formulation of an assignment problem.
- 5 Define saddle point of a game.
- What do you mean by (i) pure strategy (ii) mixed strategy?
- 7 Explain CPM and PERT in a network analysis.
- 8 What are the three types of estimates in network diagram?
- 9 Define sequencing of jobs.
- Write a short note on idle time.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a Solve graphically:

Max
$$z = 5x_1 + 7x_2$$

Subject to
$$x_1 + x_2 \le 4$$

$$3x_{1} + 8x_{2} \le 24$$

$$10x_1 + 7x_2 \le 35; \quad x_1, x_2 \ge 0$$

OR

b Solve using simplex method:

$$z = 5x_1 + 3x_2$$

$$x_1 + x_2 \le 2$$
; $5x_1 + 2x_2 \le 10$

$$3x_1 + 8x_2 \le 12$$
; $x_1, x_2 \ge 0$

12 a Solve using Least Cost entry method:

Requires 200 225 275 250

OR

b Solve the assignment problem which minimizes the total man hours:

13 a Find the minimax & maximum for
$$\begin{pmatrix} 5 & 3 & 6 \\ 2 & 1 & 3 \\ 6 & 2 & 1 \end{pmatrix}$$
.

OR

b Use Dominance property to find the value of the game:

		I luj	11.17
	(3	-2	4)
Player A	-1	4	2
	2		6)

14 a Draw the network diagram of the following project. Also find the total float for each activity:

Activity	Preceding Activity	Duration (days)
1-2		20
1 – 3	30 50	25
2-3	1-2	10
2-4	1-2	12
3 – 4	1-3,2-3	5
4-5	2-4,3-4	10

OR

b Find the critical path & total float of the following project:

In a factory, there are six jobs to perform each of which should go through two machines A & B in the order A – B. Determine the optimal sequence that minimize the total elapsed time:

Job	0	J_1	J_2	J_3	J_4	J_5	J_6
Machine A	:	1	3	8	5	6	3
Machine B	:	5	6	3	2	2	10

b Write the procedure to find the optimal sequence of processing of n-jobs on m-machines.

SECTION - C (30 Marks)

Answer any THREE Questions
ALL Questions Carry EQUAL Marks (3 x 10 = 30)

Solve using simplex method: Min $z = x_2 - 3x_3 + 2x_5$ Subject to $3x_2 - x_3 + 2x_5 \le 7$ $-2x_2 + 4x_3 \le 12$ $-4x_2 + 3x_3 + 8x_5 \le 10$ and $x_2, x_3, x_5 \ge 0$ 17 Solve the assignment problem:

Solve the game graphically: 18

Player B
$$\begin{bmatrix} 3 & -3 & 4 \\ -1 & 1 & -3 \end{bmatrix}$$

Draw the network diagram of: 19

TT CITO IICCTT	oin diagram of				
Activity	Predecessor				
A	_				
В					
C	A				
D	В				
Е	C				
F	В				
G	C, D				
Н	G, F				
I	Е				
J	Н,				
K	J				
I J	G, F E H,				

20 Find the sequence that minimize the total time required to performing the following jobs on 3 machines in the order ABC:

Processing time (hours) on				Jo	bs		
		1	2	3	4	5	6
Machine A	:	8	3	7	2	5	1
Machine B	:	3	4	5	2	1	6
Machine C	:	6	7	6	9	10	9

Z-Z-Z

END