Maximum: 75 Marks

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2019

(Third Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

PARTIAL DIFFERENTIAL EQUATIONS AND FOURIER SERIES

Time: Three Hours

SECTION-A (10 Marks) Answer ALL questions		
		carry EQUAL marks $(10 \times 1 = 10)$
1	The equation $z=(x+a)(y+b)$ gives	
	(i) $z=pq$ (iii) $z=(x+p)(y+q)$	(ii) $z=(p+a)(q+b)$ (iv) $z=p+q$
2	$(x-a)^2+(y-b)^2+z^2=1$ is a into	egral of $z^2(1+p^2+q^2)=1$.
	(i) singular	(ii) complete
	(iii) general	(iv) circular
3	If $u=f(x+iy)+g(x-iy)$, then $\frac{\partial^2 u}{\partial x^2}$ +	$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{v}^2} = \underline{\qquad}.$
	(i) $f''(x+iy) + g''(x-iy)$	(ii) $f''(x+iy)-ig''(x-iy)$
		(iv) $f(x+iy)-g(x-iy)$
4.	is called the two dimens	ional biharmonic equation.
	(i) $\nabla_1^2 \phi = 0$	(ii) $\nabla^2 \phi = 0$
	(iii) $\nabla_1 \phi^2 = 0$	(iv) $\nabla_1^4 \phi = 0$
5	In $(-\pi,\pi)$, the Fourier coefficient a	
	(i) $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$	(ii) $\frac{2}{\pi} \int_{-\pi}^{\pi} f(x) dx$
	(iii) $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$	(iv) $\int_{-\pi}^{\pi} f(x) dx$
6	Which of the following is an even function?	
	(i) x sinx	(ii) x+sinx
	(iii) x cosx	(iv) x ² sinx
7	Fourier integral is mainly used to	
	(i) find the length of a curve (iii) solve differential equations	(ii) find the area between two curves(iv) solve difference equations
8		ne value of B(w) in the Fourier integral is
	(i) 0	(ii) $\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \sin wv dv$
	$\pi_{-\infty}$	(iv) 1
9	$\frac{\partial \mathbf{u}}{\partial t} = \mathbf{c}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$ is called the	equation.
	(i) two-dimensional heat	(ii) one-dimensional heat

10 The boundary value problem is called a Dirichlet problem if _____

(i) u is prescribed on C

(ii) u is prescribed on R

(iii) u=0

(iv) u is a constant

SECTION - B (25 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 5 = 25)$

Prove that the general solution of the linear partial differential equation Pp+Qq=R is F(n,v)=0 where F is an arbitrary function and $u(x,y,z)=c_1$ and $v(x,y,z)=c_2$ form a solution of the equations $\frac{dx}{P}=\frac{dy}{Q}=\frac{dz}{R}$.

OR

- b If u is a function of x,y and z which satisfy the partial differential equation $(y-z)\frac{\partial u}{\partial x} + (z-x)\frac{\partial u}{\partial y} + (x-y)\frac{\partial u}{\partial z} = 0, \text{ show that u contains x,y and z only in combinations of x+y+z and } x^2+y^2+z^2.$
- 12 a Find the solution of the equation $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = x y$.
 - b If u=f(x+iy)+g(x-iy), where the functions f and g are arbitrary, show that $\frac{\partial^2 u}{\partial x^2} \frac{\partial^2 u}{\partial y^2} = 0.$
- 13 a Find the Fourier series of the function $f(x) = \begin{cases} 0 & \text{if } & -2 < x < -1 \\ k & \text{if } & -1 < x < 1 \\ 0 & \text{if } & 1 < x < 2 \end{cases}$

b Find the Fourier cosine series of the function $f(x) = \pi - x(0 < x < \pi)$.

14 a Let f(x) be continuous and absolutely integrable on the x-axis, $f^{1}(x)$ be piecewise continuous on each finite interval and $f(x) \rightarrow 0$ as $x \rightarrow \infty$. Then prove:

OR

(i)
$$\mathcal{F}_{\{f^1(x)\}} = w \mathcal{F}_{\{f(x)\}} - \sqrt{\frac{2}{\pi}} f(0)$$
 (ii) $\mathcal{F}_{\{f'(x)\}} = -w \mathcal{F}_{\{f(x)\}}$.

OR

- b State and prove the convolution theorem.
- 15 a Find the temperature u(x,t) in a laterally insulated copper bar 80cm long if the initial temperature is $100 \sin \left(\frac{3\pi x}{80}\right)^{\circ} C$ and the ends are kept at $0^{\circ} C$. How long will it take for the maximum temperature in the bar to drop to $50^{\circ} C$? Physical data for copper: density 8.92 gm/cm³, specific heat 0.092 cal/(gm°C), thermal conductivity 0.95 cal/(cm sec°C).

OR

b Suppose the initial temperature is u(x,0)=f(x) and the boundary condition is u(0,t)=0. Find the temperature in the laterally insulated bar using the Fourier sine transform.

SECTION -C (40 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 8 = 40)$

- 16 a (i) Find the general integral of the equation: $(xp-yp)=y^2-x^2$
 - (ii) Find the integral surface of the linear partial differential equation $x(y^2+z)p-y(x^2+z)q=(x^2-y^2)z$ which contains the straight line x+y=0, z=1.

- b Find the surface which is orthogonal to the one-parameter system $z=cxy(x^2+y^2)$ and which passes through the hyperbola $x^2-y^2=a^2$, z=0.
- 17 a Reduce the equation $\frac{\partial^2 z}{\partial x^2} = x^2 \frac{\partial^2 z}{\partial y^2}$ to canonical form.

b Find a particular integral of the equation:

(i) $(D^2-D^1)z=2y-x^2$

- (ii) $(D^2-D^1)z=e^{x+y}$
- 18 a Find the Fourier cosine series as well as Fourier sine series of the function $f(x)=x, (0 < x < \pi).$

- b Find the Fourier series of the function $f(x)=x+\pi$ if $-\pi < x < \pi$ and $f(x+2\pi)=f(x)$.
- 19 a Find the Fourier sine integral of $f(x)=e^{-kx}$ and hence show that $\int_{0}^{\infty} \frac{w \sin wx}{k^2 + w^2} dw = \frac{\pi}{2} e^{-kx}$

OR

- b Find the Fourier transform of (i) f(x) = k if 0 < x < a (ii) $f(x) = xe^{-x^2}$
- 20 a Solve the one-dimensional heat equation by the method of separation of variables.

OR

b Using the Fourier transform, find the temperature in the infinite bar if the initial temperature is $f(x) = \begin{cases} U_0 = \text{constant} & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$

Z-Z-Z

END