# PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

### **BSc DEGREE EXAMINATION DECEMBER 2019**

(Fifth Semester)

## Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

## DISCRETE MATHEMATICS AND GRAPH THEORY

Time: Three Hours Maximum: 75 Marks.

### SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks  $(10 \times 2 = 20)$ 

- 1 Write any two declarative statements.
- 2 Show that the statement pv~p is a tautology.
- 3 Define a binary relation and give an example.
- 4 Define power of a relation and give an example.
- 5 Define a lower bound and upper bound in latticea.
- 6 Define a sublattice and give an example.
- 7 Explain a graph with example.
- 8 Draw a graph containing isolated vertices, series edges and pendant vertex and index them.
- 9 Define decomposition of a graph.
- 10 Define a tree and give an example.

#### SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks  $(5 \times 5 = 25)$ 

11 a Check the contingency of the statement  $(p \land \neg q) \lor (\neg p \land q)$ .

OR

- b Explain the method of testing the validity of an argument.
- 12 a Define an equivalence relation. Give an example.

OF

- b If R is the set of all real numbers, discuss the type of function defined by  $f: R \rightarrow R$  such that  $f(x)=x^2$  for all  $x \in R$ .
- 13 a Let  $(L, \le)$  be a lattice. Prove that (i)  $b \le c \Rightarrow \begin{cases} a \land b \le a \land c \\ a \lor b \le a \lor c \end{cases}$  for every  $a, b, c \in L$ .

OR

- b Prove that every finite lattice L is bounded.
- 14 a Solve seating problem of nine members using graphs, with suitable graph.

  OR
  - b Prove that a simple graph with n vertices and k components can have at most  $\frac{(n-k)(n-k+1)}{2}$  edges.
- 15 a Prove that a tree with n vertices has (n-1) edges.

OR

b Prove that every connected graph has at least one spanning tree.

## SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry EQUAL Marks (3 x 10 = 30)

Prove that, using truth table, (i)  $p \lor (q \lor r) \equiv (p \lor q)r$  (ii)  $p \land (q \land r) \equiv (p \land q) \land r$ .

Cont...

- If R is a relation on a set A, prove that
  (i)When R is a reflexive, R<sup>-1</sup> is also reflexive.
  (ii)R is symmetric if and only if R=R<sup>-1</sup>.
  (iii)R is anti-symmetric if and only if R∩R<sup>-1</sup> C I<sub>A</sub>.
- Prove that two bounded lattices  $L_1$  and  $L_2$  are complemented if and only if  $L_1xL_2$  is complemented.
- A graph G is disconnected if and only if its vertex set V can be partitioned into two nonempty, disjoint subsets V<sub>1</sub> and V<sub>2</sub> such that there exists no edge in G whose one end vertex is in subset V<sub>1</sub> and the other in subset V<sub>2</sub>. Prove!
- 20 Prove that a given connected graph G is an Euler graph if and only if all vertices of G are of even degree and hence derive the solution of Konigsberg Bridge problem.

Z-Z-Z

END