PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2019

(First Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

CALCULUS

Time: Three Hours Maximum: 75 Marks SECTION-A (10 Marks) Answer ALL questions ALL questions carry EQUAL marks $(10 \times 1 = 10)$ The parametric equations for the curve are $x = \cos t$, $y = \sin t$, z = 1. Then the curve is 1 (i) twisted cubic (ii) helix (iii) toroidal spiral (iv) trefoil knot If $r(t) = 2\cos t i + \sin t j + 2tk$, then the value of $\int_{0}^{2} r(t) dt =$ 2 (i) $2\vec{i} + \vec{j} + \frac{\pi^2}{2}\vec{k}$ (ii) $2\vec{i} + \vec{j} - \frac{\pi^2}{4}\vec{k}$ (iii) $2\vec{i} + \vec{j} + \frac{\pi^2}{4}\vec{k}$ (iv) $2\vec{i} - \vec{j} + \frac{\pi^2}{4}\vec{k}$ The equation $z = \sqrt{9 - x^2 - y^2}$ represents the ____. 3 (i) sphere (ii) top half of the sphere (iii) circle (iv) top half of the circle The value of $\lim_{(x,y)\to(1,2)} (x^2y^2 - x^3y^2 + 3x + 2y)$ is _____. 4 (ii) 15 (iii) 11 (iv) 18 (i) 9 (ii) 15 (iii) 17

If $F(x,y)=x^3+y^3$ - 6xy, then the value of $\frac{dy}{dx}$ = 5 (i) $-\left(\frac{x^2 - 2y}{y^2 - 2x}\right)$ (ii) $\left(\frac{x^2 - 2y}{y^2 - 2x}\right)$ (iii) $\left(\frac{2y - x^2}{y - 2x}\right)$ (iv) $\left(\frac{x - 2y}{y - 2x}\right)$ If $f(x,y) = \sin x + e^{xy}$, then $\nabla f(x,y) = \langle f_x, f_y \rangle = \nabla f(0,1) = \langle f_x, f_y \rangle = \langle f_x, f_y \rangle = \langle f_y, f_$ 6 <2,2> (ii) <0,2> (iii) <2,-2> (iv) <2,0> 7 If f is continuous on a polar rectangle R by change the polar coordinates in a double integral given by $0 \le a \le r \le b$, $\alpha \le \theta \le \beta$, were $0 \le \beta - \alpha \le 2\pi$ then $\iint f(x, y) dA = ____.$ $\begin{array}{lll} (i) & \displaystyle \int \int \int f(r\cos\theta,r\sin\theta)drds & (ii) & \displaystyle \int \int \int \int f(\cos\theta,\sin\theta)rdrds \\ (iii) & \displaystyle \int \int \int f(r\sin\theta,r\cos\theta)rdrds & (iv) & \displaystyle \int \int \int f(r\cos\theta,r\sin\theta)rdrds \end{array}$ If x is a random variable with probability density function f, then its mean μ is 8 (i) $\int_{0}^{\infty} xf(x)dx$ (ii) $\int_{-\infty}^{\infty} f(x)dx$ (iii) $\int_{-\infty}^{\infty} xf(x)dx$ (iv) $\int_{0}^{\pi} xf(x)dx$ The joint density function satisfies $f(x,y,z) \ge 0$, and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y,z) dz dy dx =$ 9 (i) (ii) 0 (iii) ∞ The point having rectangular coordinates whose cylindrical point is $\left(2, \frac{2\pi}{3}, 1\right)$, is 10 (i) $(1,\sqrt{3},1)$ (ii) $(-1,\sqrt{3},1)$ (iii) $(1,-\sqrt{3},1)$ (iv) $(1,\sqrt{3},-1)$

SECTION - B (25 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 5 = 25)$

11 a Find a vector function that represents the curve of intersection of the cylinder $x^2 + y^2 = 1$ and the plane y + z = 2.

12 a Sketch the level curves of the function f(x,y)=6-3x-2y for the values k=6,0,6,12.

b Find the second partial derivatives of $f(x,y)=x^3 + x^2y^3 - 2y^2$.

13 a If $u = x^4y + y^2z^3$, where x=rse, $y = rs^{2-t}$ and $z = r^2s$ sin t, find the value of $\frac{\partial u}{\partial r}$ when r = 2, s = 1, t = 0.

OR

- b Find the local maximum value, minimum values and saddle points of $f(x,y)=x^4+y^4-4xy+1$.
- 14 a Evaluate $\iint (x+2y)dxdy$, were D is the region bounded by the parabolas $y=2x^2$ and $y=1+x^2$.

OR

- b Find the surface area of the part of the surface $z = x^2+2y$ that lies above the triangular region T in the xy-plane with vertices (0,),(1,0) and (1,1).
- Use a triple integral to find the volume of the tetrahedron T bounded by the planes x+2y+z=2, x=2y, x=0 and z=0.

OR

b The point $(0, \sqrt[2]{3}, -2)$ is given in rectangular coordinates. Find spherical coordinates for this point.

SECTION -C (40 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 8 = 40)$

- 16 a (i) Find the parametric equations for the tangent line to the helix with parametric equations $x=2\cos t$, $y=\sin t$, z=t at the point $\left(0,1,\frac{\pi}{2}\right)$
 - (ii) Find the length of the arc of the circular helix with vector equation $r(t) = \cos t \hat{i} + \sin t \hat{j} + t \hat{k}$ from the point (1,0,0) to the point $(1,0,2\pi)$.

OR

- b (i) Show that the curvature of a circle of radius a is $\frac{1}{a}$.
 - (ii) Find the curvature of the twisted cubic $r(t) = \langle t, t^2, t^3 \rangle$ at a general point and at (0,0,0).
- 17 a (i) If $f(x,y) = \frac{xy}{(x^2 + y^2)}$, does $\lim_{(x,y)\to(0,0)} f(x,y)$ exist?
 - (ii) Find $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2}$ if it exists.

OR

- b Show that $f(x,y) = xe^{xy}$ is differentiable at (1,0) and find its linearization there. Using it approximate f(1.1,-0.1)
- 18 a Find the equations of the tangent plane and normal line at the point (-2,1,-3) to the ellipsoid $\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$.

OR

- b Find the points on the sphere $x^2+y^2+z^2=4$ that are closest to an farthest from the point (3,1,-1).
- 19 a Find the volume of the solid that lies under the parabolioid $z = x^2+y^2$ and above the region D in the xy-plane bounded by the line y=2x and the parabola y= x^2 .

b Find the moments of inertia I_x, I_x , and I_0 of a homogenous disk D with density $\rho(x, y) = \rho$, center the origin, and radius a.

20 a Evaluate $\iiint_E \sqrt{x^2 + z^2} \, dv$, where E is the region bounded by the paraboloid $y = x^2 + z^2$ and the plane y = 4.

OR

b Use spherical coordinates to find the volume of the solid that lies above the cone