PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2019

(Fourth Semester)

Branch – MATHEMATICS WITH COMPUTER APPLICATIONS

ANALYTICAL GEOMETRY OF 3D AND VECTOR CALCULUS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- Sow that the points (2,1,1) and (2,5,-1) lie on different rids of the plane x-2y+3z+4=0.
- Find the angle between the planes 3x-4y+5z=0; 2x-y-2z=5.
- Find the symmetrical form of line x+5y-z=7; 2x-5y+3z+1=0.
- Examine the nature of intersection of the planes 2x-5y+z=3; x+y+4z=5; x+3y+6z=1.
- Obtain the equations of the sphere described n the join of points (2,-3,4), (-5,6,7) as diameter.
- Find the two tangent planes to the sphere $x^2+y^2+z^2-4x+2y+5=0$ which are parallel to the plane.
- 7 Define rolenoidal and rotational vector.
- Find the magnitude and direction of the greatest directional derivative of x^2yz^3 at (2,1,-1).
- 9 Evaluate $\int A.dr$ if $A=x^2i+y^3j$ along $y=x^2$ in the xy plane from (0,0) to (1,1).
- Using Stoke's theorem, prove that curl grad $\phi=0$.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

Find the equation of the plane passing through the points (3,-8,2) and (-2,-1,1) and perpendicular to the plane x+y+z+1=0.

OR

- b The vertices of a tetrahedron are (0,1,2), (3,0,1), (4,3,6), (2,3,2). Show that its volume is 6.
- 12 a Find the image of the point (1,3,4) under reflection in the plane 2x-y+z+3=0. OR
 - b Show that the lines $\frac{x+5}{3} = \frac{y+4}{1} = \frac{z-7}{-2}$, 3x+2y+z-2=0=x-3y+2z-3 are coplanar and find the equation s to the plane in which they lie.
- Find the equation of the sphere through the points (0,0,0), (0,1,-1), (-1,2,0) and (1,2,3).

OR

- b Find the equation of the spheres that passes through the two points (0,3,0), (-2,-1,-4) and cuts orthogonally the two spheres $s:x^2+y^2+z^2+x-3x-2=0$, $s_1:2(x^2+y^2+z^2)+x+3y+4=0$.
- 14 a If $\nabla \phi = 2xyz^3i + x^2z^3j + 3x^2yz^2k$ then find $\phi(x,y,z)$ if $\phi(1,-2,2)=4$.

OK

b Prove $F=(2xy+z^3)i+x^2j+3xz^2k$ is a conservative force. Find ϕ so that $\nabla \phi = F$.

14MCU12

Cont...

Find the work done by the force F=3xyi-5zj+10xk along the curve c, $x=t^2+1$, $y=2t^2$, $z>t^3$ from t=1 to 2.

OR

b Find the common area between $y^2=4x$ and $x^2=4y$ by using Green's theorem.

SECTION - C (30 Marks)

Answer any **THREE** Questions **ALL** Questions Carry **EQUAL** Marks (3 x 10 = 30)

- The plane x+35y-0z-156=0 is a bisector of the angle between two planes one of which is 4x-3y+12z+13=0. Find the equation of other plane.
- Find the magnitude ad the equations of the line of shortest distance between the lines $\frac{x-8}{3} = \frac{y+9}{-6} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$.
- Prove that the plane x+2y-z=4 cuts the sphere $x^2+y^2+z^2-x+z-2=0$ in a circle of radius unity and find the equation of sphere which has this circle for one of its great circle.
- 19 (i) Find the value of a if (x+3y)i+(y-2z)j+(x+az)k is solenoidal.
 - (ii) Prove that div $(r^n r)=(n+3)r^n$ and $curl(r^n r)=0$.
- Verify Gauss divergence theorem for the function $2xzi+yzj+z^2k$ over the upper half of the sphere $x^2+y^2+z^2=a^2$.

Z-Z-Z

END