MSc DEGREE EXAMINATION MAY 2019 (Third Semester)

Branch - CHEMISTRY

PHYSICAL CHEMISTRY - III

Time : Three Hours		kimum : 75 Marks
Answer ALL questionsALL questions carry EQUAL marks $(5x15 \sim 7)$		$(5 \times 15 \sim 75)$
1	a Compare collision theory and ARRT. Which one is su	perior? Why? (6)
	b With suitable mechanisms, obtain the first order and 3/2 expression for thermal decomposition of acetaldehyde.	
	c Write a note on Kinetic isotopic effect. OR	(3)
	d Discuss Rice - Herzfeld mechanism for decomposition of molecule.	of organic (5)
	e With neat sketch, account of first and second explosion reaction between H_2 and 0_2 .	limit in the (5)
	f Discuss the statistical thermodynamic approach to AA	RT. (5)
2	a Account on : Secondary salt effect and obtain Bronste equation.	d -Bjeruum (4)
	b What do you mean enzyme catalysis? Explain the effect enzyme catalysis.	of pH in (4)
	c Describe (i) Flash photolysis method and (ii) T-jump me studying fast reaction kinetics. OR	ethod in (4+3)
	d How does the rate of reactions depend on the following pressure (ii) dielectric constant?	: (i) Internal (2+2)
	e Compare and contrast : Arrhenius intermediates a intermediates.	nd Van't Hoff (4)
	f What is the need for the special techniques for the str fast reaction?	udy of kinetics of
	Describe stopped flow method in studying fast reaction	n kinetics. $(2+5)$
3	a Explain the method of determining surface areas of an al BET adsorption isotherm.	osorbent from (4)
	b Explain the term : G - value. Write a note on : Dosimetry.	(2+4)
	c Define the term quantum efficiency. Write the photoe mechanism for the following reaction and give the quantum yield. $H_2(g) + Cl_2(g)$ -»2HC1 (g). " " OR	
		: t 1:(f)

d Deduce Langmuir adsorption isotherm and comment on its applications. (5)

Page 2

3	Cont	
	e What are hydrated electrons? Briefly explain the mechanism of Radialysis of water.	(2+4)
	f Calculate the number of moles of HC1 produced by the absorption of one joule of radiant energy of wave length 480 nm in the photochemical reaction $H?(g) + Cl_2(g) -+2HC1$ (g)., if the quantum yield of the	
	reaction is $1.0 \ge 10^6$.	
4	a What are ensembles? Give its different types and explain.	(6)
	b Obtain the expression for Maxwell - Boltzmann statistics.	(4)
	c Derive the expression for vibrational contribution to the thermodynamic function E.	(5)
	OR d State and explain permutation and combination of statistical	
	thermodynamics.	(4)
	e Distinguish micro and macro states.	(5)
	f Derive the expression for rotational contribution to the thermodynamic function $\rm C_v.$	(6)
5	a Derive expression for Bose - Einstein distribution law.	(4)
	b Briefly discuss on heat capacity of solids.	(6)
	c Account on : negative absolute temperature. OR	(5)
	d Derive expression for Fermi - Dirac distribution law.	(4)
	e Highlight the heat capacity of H_2 and NO gases.	(6)
	f What do you mean phase space?	(5)
	z-z-z END	