PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2019

(Second Semester)

Branch - CHEMISTRY

PHYSICAL CHEMISTRY - II

Time:	Ihree	Hours			Maximum. 75 Marks
		SECTION- Answer A	LL q	uestions	(10 1 10)
		ALL questions c			
1	What	is the eigen value of functio	n, y=	sin ax, for opera	ator $\frac{d^2}{dx^2}$?
	(i) a (iii) a	•	(ii) (iv)	-a ² None	
2	(i) s	ondition for well-behaved w single valued nultivalued	(ii)	function is not continuous none	
3	The z	ero point energy of simple h			
	(i)	hu	(ii)	$\frac{3}{2}$ ho	
	(iii)	$\frac{1}{2}$ ho	(iv)	zero	
4	(i) 1	orbital shapes are obtained fr radial function distribution function	(ii)	angular function	n
5	(i)	otal wave function is symmetric antisymmetric		spatical none	
6	(i)	t is the variation parameter in z z electron correlation	(ii)	wave function o perturbation none	f helium atom?
7	The r (i) (iii)		(ii)	C ₃ done	•
8	(i)	the symmetry elements do n Abelian non-Abelian	(ii)	mmute with eac Cyclic none	h other, then the group i
9	(i)	neral, all 'u' type of modes s active exclusive	(ii)	d be found to be inactive none	IR.
10	(i)	on-polarisable molecule, the inactive allowed	(ii)		

SECTION - B (25 Marks)

Answer **ALL** questions

ALL questions carry EQUAL Marks $(5 \times 5 = 25)$

11 a What are Hermitian operators? Give their significance.

OR

- b Derive time independent Schrodinger equation using separation of variables procedure.
- 12 a Obtain and solve the Schrodinger equation for simple harmonic oscillator.

OR

- b Explain the degeneracy in particle in a 3D box.
- 13 a Using HMO theory, calculate the delocalization energy in $\frac{1}{3\lambda}$ but adience.

OR

- b State and explain variation method.
- 14 a Sketch the flow chart for deducing the point group symmetry of the molecule.

OR

- b Define and explain Great Orthogonality theorem.
- 15 a How do you determine the vibrational modes in NH₃ molecule using group theory?
 - b Apply group theory to deduce the hybrid orbitals in BF₃ molecule.

SECTION -C (40 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 8 = 40)$

16 a Describe the essential postulates of quantum mechanics.

OR

- b Explain the following:
 - (i) Commutator operators.

(4)

- (ii) Heisenberg's uncertinity principle. (2)
- (iii) Well-behaved wave function.

(2)

17 a Set up and solve the Schrodinger equation of a particle in 3D box.

OR

- b Derive an expression for energy of a rigid rotator from the Schrodinger wave equation.
- 18 a Describe the following:

(i) Approximation methods (4) (ii) Slater determinants (4)

b Explain the perturbation method and illustrate its application to He atom.

19 a Apply group theory to construct the character table for C_{3v} point group symmetry.

OR

b Define and explain:

molecule?

(i) Symmetry elements and operations.

(4)

- (ii) Reducible and irreducible representations. (4)
- 20 a (i) How are vibrational modes for SO₂ classified?

(4)

(ii) Explain the symmetry selection rules for Raman Spectra.

(4)

plant the symmetry selection raises for raina

By applying group theory, how do you obtain the hybrid orbitals in NH₃

OR