PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2018

(Fourth Semester)

Branch -SOFTWARE SYSTEMS

(Five year integrated)

OPERATIONS RESEARCH

Time: Three Hours

Maximum: 75 Marks

Answer **ALL** questions

ALL questions carry EQUAL marks

 $(5 \times 15 = 75)$

- 1 a Explain the standard form of Linear programming problem.
 - b Solve the LPP by using graphical method:

Max z = 5x + 7y

Subject to the constraints

 $12x + 12y \le 840$; $3x + 6y \le 300$;

 $8x + 4y \le 480$ and $x, y \ge 0$.

OR

- c State the formulation of linear programming problem.
- d Solve the LPP using simplex method: Maximize $z = 6x_1 + 4x_2$ subject to constraints $2x_1 + x_2 \le 390$; $3x_1 + 3x_2 \le 810$; $x_2 \le 200$ and $x_1, x_2 \ge 0$.
- 2 a State the algorithm of North-west corner rule for finding initial basic feasible solution of a transportation problem.
 - b Obtain an initial basic feasible solution to the following transportation problem using the Matrix Minima method:

	D_1	D_2	D_3	D_4	Supply
O_1	1	2	3	4	6
O_2	4	3	2	0	8
O_3	0	2	2	1	10
Demand	4	6	8	6	m.J
		OF	\		

c A project work consists of four major jobs for which four major contractors have submitted tenders. The tender documents quoted in thousand rupees are given below with the cost matrix as

•			J	ods	
		\mathbf{J}_1 .	J_2	J_3	J_4
Contractors	C_1	15	27	35	20
Contractors	C_2	21	29	33	17
	C_3	17	25	37	15
•	C_4	14	31	39	21

Find the assignment which minimizes the total of the project cost. Each contractor has to be assigned one job.

- d Define the term set-up cost and holding cost as applied to an inventory problem.
- a What are the situations which make the replacement of item necessary?

Cont...

3 Cont...

b A truck owner finds from his past records that the maintenance cost per year of a truck whose purchase price is Rs. 8,000 are as given below:

Year	:	1	2	3	4	5	6	7	8
Maintenance Cost	:	1000	1300	1700	2200	2900	3800	4800	6000
Resale price	:	4000	2000	1200	600	500	400	400	400

Determine at which time it is profitable to replace the truck.

OR

- c State some of the simple replacement policies.
- d What is 'group replacement'? Give an example.
- 4 a Describe a two-person zero-sum game.
 - b Solve the game whose pay-off matrix is given by :

$$\begin{array}{c|ccccc} & B_1 & B_2 & B_3 \\ A_1 & \begin{bmatrix} 1 & 3 & 1 \\ 0 & -4 & -3 \\ 1 & 5 & -1 \end{bmatrix} \\ & OR \end{array}$$

- c Explain the following term
 - (i) queue length and (ii) traffic intensity
- d A petrol pump station has two pumps. The service times follows exponential distribution with a mean of 4 minutes and cars arrive for service in a Poisson process at the rate of ten cars per hour. Find the probability that a customer has to wait for service. What proportion of time the pumps remain idle?
- 5 a State the iterative procedure of determining the critical path in CPM.
 - b The following table gives the activities of a construction project and duration:

Activity	1-2	1-3	2-3	2-4		4-5
Duration (Days)	20	25	10	12	6	10

- (i) Draw the network for the project and
- (ii) Find the critical path.

OR

- c State the PERT algorithm.
- d Explain (i) Pessimistic time (ii) Optimistic time and (iii) Most likely time.