PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2018

(First Semester)

Branch - SOFTWARE SYSTEMS

(Five year integrated)

MATHEMATICS-I

Time: Three Hours Maximum: 75 Marks

Answer **ALL** questions

ALL questions carry EQUAL marks

 $(5 \times 15 = 75)$

(5)

1 a For what value of K is the matrix $\begin{bmatrix} 6 & 3 & 5 & 9 \\ 5 & 2 & 3 & 6 \\ 0 & 1 & 2 & 3 \\ 2 & 1 & 1 & K \end{bmatrix}$, using rank

method. (5)

b Show that the equations:

2x - y + z = 7; 3x + y - 5z = 13; x + y + z = 5 are consistent and solve them. (10)

OR

c Find the eigen values and eigen vectors of the matrix

$$\begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix}. \tag{10}$$

d Calculate
$$A^4$$
 when $A = \begin{bmatrix} -1 & 3 \\ -1 & 4 \end{bmatrix}$. (5)

2 a Solve $p^2 + q^2 = nqp$.

b Solve $(D^2 - 3D + 2) y = \sin 3x$. (10)

OR

c Solve
$$p + q = x + y$$
. (3)

d Find the equation of the cone satisfying the equation xp + yq = z and passing through the circle $x^2 + y^2 + z^2 = 4$ and x + y + z = 2. (12)

3 a Solve by Gauss elimination method:

$$3x + 4y + 5z = 18$$
; $2x - y + 8z = 13$; $5x - 2y + 7z = 20$ (8)

b Explain the procedure for Gauss – Jacobi method. (7)

OR

c Solve the system by Gauss – Jordan method:

$$x + 2y + z = 3$$
; $2x + 3y + 3z = 10$; $3x - y + 2z = 13$ (9)

d Explain the step by step procedure for Gauss – Seidel method of iteration. (6)

4 a If
$$f(0)=3$$
; $f(1)=12$, $f(2)=81$, $f(3)=200$, $f(4)=100$, $f(5)=8$, find $\nabla^4 f(4), \nabla^5 f(0)$ and $\nabla^2 f(2)$. (7)

4 Cont...

b From the table, estimate the number of students who obtained marks between 40 & 45:

Marks :	30-40	40-50	50-60	60-70	70-80
No. of students:	31	42	51	35	31
	OF	{			

c Compute the value of sin 38°.

X	0	0	10	20	30	40
$y = \sin x$	D •	_ 0	0.17365	0.34202	0.5	0.64279

d Estimate the missing value:

X	•	0	1	2	3	4
У	:	1 .	2	4		16
1 '	1.	11.00 0	23 2		·	

Explain why it differ from $2^3 = 8$.

(5)

(15)

(8)

(10)

5 a The population of a certain town is given below. Find the rate of growth of the population in 1931, 1941, 1961 and 1971:

Year (x)	:	1931	1941	1951,	1961	1971
Population in '000	(y) :	40.62	60.80	79.95	103.56	132.65
		OR				

b Evaluate $I = \int_{0}^{\infty} \frac{1}{1+x} dx$ using

(i) Trapezoidal rule (ii) Simpson's rule (both) check up by direct integration.

(15)