11/88/2020 18MAP14

Term Date & Time: 26-Sep-2020 (02:00 PM - 05:30 PM)

PSG COLLEGE OF ARTS AND SCIENCE

Note: Writing 3hrs: Checking & Inserting Image: 30mins

MSc DEGREE EXAMINATION MAY 2020 (Fourth Semester)

Branch - MATHEMATICS OPERATOR THEORY [18MAP14]

	Or Division Timoth [10,1111]	
Marks: 75	Duration Duration	: 210 mins.
	SECTION - A	
Answer all t	he questions.	
1)	For T and T* be an operator on a Hilbert space H. Which one is true? (i) $(T^*)^*=T^{**}$	
	$(ii)(xT)^*=x^*T^*$	(1)
	(iii) T*=T	(1)
	(iv) $(\alpha T)^* = \overline{\alpha} T^*$	
.2)	If there exits an operator A such that $A_1 \ge A_2 \ge \ge A_n \ge \ge A$, then the name the sequence $\{A_n\}$ is	(1)
3)	What is an unitary operator? (i) U.U*=U (ii) U*.U=I (iii) U.U*=U*.U (iv) U.U*=U*	(1)
4)	An operator T on a Hilbert space H is invertible operator, if there exits an operator S is	(1)
5)		(1)

https://examcloud.in/epn/reports/exam-qpaper.php

1/4

What is the numerical range W(T) of an operator T on a Hilbert space H? (i) $\{(Tx,x): ||x||=1\}$ (ii) $\{(Tx,x): ||x|| \neq 1\}$ (iii) $\{(Tx,x): ||x|| < 1\}$ (iv) $\{(Tx,x): ||x|| > 1\}$ 6) Identify the spectrum of T. (i) $\{\lambda \in : T - \lambda \text{ is invertible}\}$ (ii) {λ∈ : T-λ is not invertible} (1) (iii) $\{\lambda \in : T + \lambda \text{ is invertible}\}$ (iv) $\{\lambda \in : T + \lambda \text{ is not invertible}\}$ 7) Which one is paranormal operator? (i) $||T^2x|| \le ||Tx||^2, x \in H$ (ii) $||T^2x|| = ||Tx||^2, x \in H$ (1)(iii) $||T^2x|| \ge ||Tx||^2$, $x \in H$ (iv) $||T^2x|| \le ||xT^2||$ 8) An operator is convexiod if and only if $T-\lambda$ is spectraloid for all number λ . (i) Real (ii) Irrational (1)(iii) Rational (iv) Complex 9) Which one is p-hypernormal? (i) $(T^*T)^p \le (TT^*)^p$ (ii) $(T^*T)^p \ge (TT^*)^p$ (1) (iii) $(T^*T)^p = (TT^*)^p$ (iv) $(T^*T)^p \neq (TT^*)^p$ 10) An operator T belongs to class A if (i) $|T^2| \ge |T^2|$ $(ii) ||T^2|| \le ||T||^2$ (1) (iii) $|T^2| \ge |T|^2$ (iv) $|T^2| \le |T|^2$ SECTION - B Answer all the questions. 11) Show that for any linear operator T on a Hilbert space H, the following statements are mutually equivalent: (i) T is bounded (5) a) (ii) T is continuous on the whole space H

18MAP14

[OR]

b)

12)

(iii) T is continuous on some point x, on H.

State and prove Generalized Schwarz inequality.

11/28/2020

(5)

(5)

11/38/2020	18MAP14	
a)	Let U be a partial isometry operator on a Hilbert space H with the initial space M and the final space N. Then prove that (i) UP _M =U and U*U=P _M and (ii) N is a closed subspace of H.	
	(i) of M o and o o TM and (ii) it is a closed subspace of it.	
[OR]	Assume A and B be normal operators. If AX=XB holds for some operator X, them rove that A*X=XB*.	(5)
13).	If T is an operator such that I-T <1, then prove that T is invertible.	
		(5)
a)		
[OR]	If T is a normal operator, then prove that T is normaloid, i.e., $ T =r(T)$.	(5)
14)	If an operator T is convexoid such that both $\sigma(T)$ and $\sigma(ReT)$ are connected, then prove that $Re\sigma(T) = \sigma(ReT)$.	(5)
a)		
[OR] b)	State and prove Lowher-Heinz inequality.	(5)
15)	Prove that every log-hyponormal operator is a class A operator and also prove that every class A operator is a paranormal operator.	(5)
a)		
[OR]	Let T=U T be the polar decomposition of a log-hyponormal operator. Then	
b)	prove that $\tilde{T}_{s,t} = T ^s \cup T ^t$ is $\frac{\min\{s,t\}}{s+t}$ hyponormal for any s>0 and t>0.	(5)
	SECTION - C	
Answer all	the questions.	
16)	Assume P_1 and P_2 be two projections onto M_1 and M_2 respectively. The prove that (i) $P=P_1-P_2$ is a projection if and only if $M_1 \perp M_2$.	(0)
a)	(ii) If $P=P_1+P_2$ is a projection, then P is the projection on to $M_1 \oplus M_2$.	(8)
rop1		
[OR] b)	If T is an operator on a Hilbert space H over the complex scalars C, then prove the following	
	(i) T is normal iff $ Tx = T^*x $ for all $x \in H$.	
	(ii) T is self-adjoint iff (Tx,x) is real for all x∈H.	(8)
	(iii) T is unitary iff Tx = T*x = x for all x∈H.	
	(iv) T is hyponormal iff $ Tx \ge T^*x $ for all $x \in H$.	
17)	Let $T=U T $ be the polar decomposition of an operator T on a Hilbert space H. Then prove that (i) $N(T)=N(T)$ (ii) $ T^* ^q=U T ^qU^*$ for any positive number q.	(8)
a)		
[OR] b)	State and prove polar decomposition theorem.	(8)

(8)

State and prove spectral mapping theorem.

18)

	[14] [14] [15] [16] [16] [16] [16] [16] [16] [16] [16	
1/28/2020	18MAP14	
a) [OR] b)	Assess the characterizations of normaloid operators.	(8
-19)	Prove that the relations self-adjoint \subseteq Normal \subseteq Quasinormal \subseteq Subnormal Hyponormal \subseteq Paranormal \subseteq Normaloid \subseteq Spectraloid.	(8
a) [OR] b)	State and prove generalized Furuta inequality.	(8
20)	Let $T=\hat{U} T $ be p-hyponormal for P>0 and U be unitary. Then prove that (i) $\tilde{T}= T ^{\frac{1}{2}}U T ^{\frac{1}{2}}$ is $\left(P+\frac{1}{2}\right)$ -hyponormal if $0 < P < \frac{1}{2}$.	(
a)	(ii) $\tilde{T} = T ^{5/4}U T ^{5/4}$ is hyponormal if $\frac{1}{2} \le P < 1$.	
[OR]	Prove that for each k>0, an operator T is absolute k-para normal if and only if $T^* T ^{2k}T^{-}(k+1)\lambda^k T ^2+k\lambda^{k+1}\geq 0$ holds for all $\lambda>0$.	(

----End----