11STU24

Exam Date & Time: 30-Sep-2020 (10:00 AM - 01:45 PM)

PSG COLLEGE OF ARTS AND SCIENCE

Note: Writing 3hrs: Checking & Inserting Image : 30mins + Grace Time : 15mins

BSc DEGREE EXAMINATION MAY 2020 (Sixth Semester)

Branch - STATISTICS

CORE ELECTIVE-II - OPERATIONS RESEARCH - II [14STU23]

Marks: 75		Duration: 225 mins.
	SECTION A	
Answer all t	he questions.	
1)	What is pay-off matrix?	(2)
2)	What is two person zero-sum game?	(2)
3)	What are the two categories of replacement problem?	(2)
4)	When does replacement problem arise?	(2)
5) .	Define Simulation.	(2)
6)	What are the types of simulation models?	(2)
7)	Define queue discipline.	(2)
8)	Define transient state.	(2)
9)	What is Network?	. (2)
10) -	Expand PERT and CPM.	. (2)
	SECTION B	
Answer all th	ne questions.	

Solve the following 2x2 game graphically: $\begin{pmatrix} 2 & 1 & 0 & -2 \\ 1 & 0 & 3 & 2 \end{pmatrix}$.

(5)

1/3

https://examcloud.in/epn/reports/exam-qpaper.php

11)

a)

11/28/2020 [OR] b)	11STU24 (Explain the Dominance property.										(5)
12)	A firm is conside Rs.12,200 and th operating) cost in	e scrap	value]	Rs .200.	Then	unning	(maint	enance	and		
a)	Year Running Cost When should the	1 200	2 500	3 800	4 1200	5	6 2500	7 3200	8 4000		(5)
[OR] b)	How would you gradually?	deal v	with rep	placem	ent of	equipn	nents tl	hat det	eriorate	5	(5)
13)	Explain the Monte-Carlo simulation procedure.										
a) [OR] b)	Customer arrive inter-arrival and units respective units. What is percentage idle	l servio ly. Sin the a	ce time nulate ti verage	he syste waitin	em and g time	t and g hand c per cu	given b omputa ustome	y 1.8 au itions for r? Wh	nd 4 tin or 14 tin nat is th	ne ne ne	(5)
14) a)	percentage idle time of the facility? (Assume that the system starts at t=0). Explain the operating characteristics of a queueing system.										(5)
[OR] b)	A T.V. repairma distribution with they came in an average rate of each day?	n mean nd if th	30 min le arriv	utes. I al of s	f he rep ets is a	pairs se pproxi	ts in th mately	e order poisson	in which a with a	h n	(5)
15) a)	Write the rules	for net	twork c	onstru	ction.						(5)
[OR] b)	Draw a network	diagra	um for t	he foll	owingo	lata.			1.1		
	Activity: Preceding activ	vities:	A None		D B ON Ċ		F G E C	H D,F	I J G H,	I	(5)
the second s	ut of 5 questions.										
16)	For the game strategies and t	with the valu	follow ue of th	ing pa ie game	yoff m $ \begin{pmatrix} 5 & 1 \\ 3 & 4 \end{pmatrix} $	atrix,	determ	ine the	optim	um	(10)

https://examcloud.in/epn/reports/exam-qpaper.php

2/3

11STU24

A computer has a large number of electronic tubes. They are subject to mortality as given below:

Period	1	2	3	4	5
Age of failure (hours)	0-200	201-400	401-600	601-800	801-1000
Probability of failure	0.10	0.26	0.35	0.22	0.07

If the tubes are group replaced, the cost of replacement is Rs.15 per tube. Group replacement can be done at fixed intervals in the night shift when the computer is not normally used. Replacement of individual tubes which fail in service costs Rs.60 per tube. How frequently should the tubes be replaced?

18)

A confectioner sells confectionary items. Past data of demand per week (in hundred kilograms) with frequency is given below:

Demand / Week:	0	5	10	15	20	25
Frequency :	2	11	8	21	5	3
the second s				the second se		

Using the following sequence of random numbers, generate the demand for the next 10 weeks. Also find the average demand per week.

35	52	90	13	23	73	34	57	35	83	94	56	67	66	60

Describe the queueing model $(M/M/C : \infty/FIFO)$.

20)

19)

A small project consists of seven activities for which the relevant data are given below:

Activity	A	B	C	D	E	F	G	
Preceding Activity		-	1.42	A,B	A,B	C,D,E	C,D,E	(10)
Activity Duration (Days)	4	7	6	5	7	6	5	(10)

(i) Draw the network and find the project completion time. And

(ii) Calculate total float for each activity and highlight the critical path.

-----End-----

(10)

(10)