14MCU25

Exam Date & Time: 28-Sep-2020 (10:00 AM - 01:45 PM)

PSG COLLEGE OF ARTS AND SCIENCE

Note: Writing 3hrs: Checking & Inserting Image : 30mins

BSc DEGREE EXAMINATION MAY 2020 (Sixth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS COMPLEX ANALYSIS [14MCU25]

Marks: 75

6

7

8

9)

10

An 11)

s://e

	SECTION A	Duration: 210 mins
Answer	all the questions.	
)	Define analytic in the domain.	
)		(2)
	Write down the Laplace's differential equation.	
)	Define ordinary points.	. (2)
	Denne ordinary pomts.	(2)
)	What is meant by a Translation?	
	Dofine a module of a	(2)
	Define a partition of the interval [a,b].	(2)
	State Gauss mean value theorem.	
		(2)
	Define a zero of order m.	
		(2)
A.A. T	Define a meromorphic function.	
-	and the second	(2)
	Write down the formula for residue of $\frac{\phi(z)}{(z-a)^m}$ at z=a.	
1.	$(z-a)^m$	(2)
N	State Jordan's Inequality.	and the second
	Addition of Micquainty.	(2)
	SECTION B	
swer all	the questions.	
	State and prove Cauchy-Riemann partial differential equations.	
a)		(5)
[OR]		
b)		(5)
camcloud.in	n/epn/reports/exam-opaper.php	

1/3

/28/2020	14MCU25	
	Show that the function $e^{x}(\cos y+i \sin y)$ is holomorphic and find its derivative.	
12) a)	Consider the transformation $w = \sqrt{(x^2 + y^2)}$ -iy and determine the region D^1 of the w-plane corresponding to the region D of the z-plane given by circular disc $x^2+y^2 \le 1$.	(5)
[OR] b)	Let the rectangular region D in the z-plane be bounded by x=0, y=0, x=2, y=3. Determine the region D ¹ of the w-plane into which D is mapped under the transformation $w = \sqrt{2} e^{i\chi}z$.	(5)
13) a)	Using the definitions of an integral as the limit of a sum evaluate the integral $\int_{L} z dz$ where L is any rectifiable are joining the points $z=\alpha$ and $z=\beta$.	(5
[OR] b)	Let $f(z)$ be analytic within and on the boundary C of a simply connected	
	region D and let z_0 be any point within C, then prove that $f^1(z) = \frac{1}{2\pi i} \int \frac{f(z)}{C(z-z_0)^2} dz.$	(5)
14) a)	State and prove Liouville's theorem.	(5
[OR] b)	Represent the function $f(z) = \frac{z}{(z-1)(z-3)}$ by a series of negative powers of (z-1) which converges to $f(z)$ when $0 < z-1 < 2$.	(5
15) a)	If a>0, prove that $\int_{0}^{\infty} \frac{dx}{(x^{2}+a^{2})^{2}} = \frac{\pi}{4a^{3}}$.	(5)
[OR] b)	Apply Calculus of residues to prove that $\int_{0}^{2\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} d\theta = \frac{\pi}{6}$.	(5)
	SECTION C	
Answer 3 o 16)	ut of 5 questions. If u-v=(x-y) (x ² +4xy+y ²) and f(z)=u+iv is an analytic function of z=x+iy, find f(z) in terms of z.	(10
17)	If $w=f(z)$ represents a conformal transformation of a domain D in the z- plane into a domain D of the w-plane then prove that $f(z)$ is an analytic function of z in D.	(10
8)		(10
s'//examplaud in	l/epn/reports/exam-qpaper.php	(10

State and prove Cauchy's Integral formula theorem.

State and prove Laurent's theorem.

Prove that
$$\int_{0}^{\pi} \frac{ad\theta}{a^{2} + \sin^{2}\theta} = \frac{\pi}{\sqrt{1 + a^{2}}}, (a>0).$$

-----End-----

these of

11/28/2020

19)

20)

https://examcloud.in/epn/reports/exam-qpaper.php

*

Ro

(10)

(10)