PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2022

(Fourth Semester)

Branch – MATHEMATICS WITH COMPUTER APPLICATIONS

SEQUENCE, SERIES AND TRIGONOMETRY

Time: Three Hours	Maximu	m: 75 Marks
Answe	ON-A (10 Marks) r ALL questions ns carry EQUAL marks	$(10 \times 1 = 10)$
1 The series $\sum_{n=1}^{\infty} \frac{n^2}{5n^2 + 4}$ is	(ii) divergent	
(i) convergent(iii) monotonic	(iv) decreasing	
2 For the series with positive ter	$\operatorname{rms} \sum a_n$ and $\sum b_n$, $\sum b_r$	is divergent
implies $\sum a_n$ is also divergen	nt if	
(i) $a_n \le b_n$ (ii) a_r	$n \ge b_n$	
(iii) $a_n < b_n$	(iv) $a_n = b_n$	
 A series ∑a_n is called convergent. (i) absolutely convergent (iii) conditionally convergent 	(ii) absolutely diverg	ent
4 If $\lim_{n \to \infty} \sqrt[n]{an} = L < 1$, then the sis called	n=1 see a si	nvergent. This test
(i) Root test (iii) Comparison test	(ii) Ratio test(iv) Integral test	
5 The Interval of convergence (i) (0,1) (iii) (-1,1)	(ii) [0,1] (iv) [-1,1]	
6 The power series of $\frac{1}{(1-x)^2}$	is	y last the Contra
6 The power series of $\frac{1}{(1-x)^2}$ (i) $1+x+x^2+$ (iii) $1-x-x^2$	(ii) $1+2x+3x^2+$ (iv) $1+2x-3x^2+$	
7 The series expansion of $\sin \theta$ (i) $1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots$	(ii) $1 + \frac{\theta^2}{2!} + \frac{\theta^4}{4!} + \dots$	
(i) $1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots$ (iii) $\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \dots$	(ii) $1 + \frac{\theta^2}{2!} + \frac{\theta^4}{4!} + \dots$ (iv) $\theta + \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \dots$	
		Cont

- 8 The value of $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} =$
 - (i) 0

(ii) ∞

(iii) 0

- (iv) indeterminate form
- The expression for $\sin hx =$

(ii) $\frac{e^{ix}+e^{-ix}}{2i}$

- (iv) $\frac{e^x e^{-x}}{2i}$
- The value of sin(ix) =10
 - (i) i sin x

(ii) i sin hx

(iii) sin hx

(iv) None of these

SECTION - B (25 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 5 = 25)$

11 a Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent and find its sum.

- b Show that the sequence $a_n = \frac{n}{n^2 + 1}$ is decreasing.
- 12 a Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$.
 - b Test the series $\sum_{n=1}^{\infty} \frac{n^3}{3^n}$ for absolute convergence.
- 13 a For what value of X is the series $\sum_{n=1}^{\infty} n! x^n$ convergent?
 - Find the power series representation for $f(x) = \tan^{-1}(x)$.
- 14 a Expand $\sin^6 \theta$ in series of cosines of multiples of θ .

b Find $\lim_{\theta \to 0} \frac{n \sin \theta - \sin n\theta}{\theta (\cos \theta - \sin n\theta)}$.

15 a Prove that $\tanh x = \frac{2 \tanh x}{1 + \tanh^2 x}$

b Show that $log(i) = \frac{4n+1}{4m+1}$, where m and n are integers.

SECTION -C (40 Marks)

Answer ALL questions
ALL questions carry EQUAL Marks

 $(5 \times 8 = 40)$

16 a Prove that every bounded monotomic sequence is convergent.

OR

- b Approximate the sum of the series $\sum_{n=0}^{\infty} \frac{1}{n^3}$ by using the sum of the first 10 terms. Estimate the error involved in this approximation.
- 17 a Test the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+1}$ for convergence or divergence.
 - b State and prove the Ration test.
- 18 a Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(-3)^n \, x^n}{\sqrt{n+1}} \, .$

OR

- b For what value of x does the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ converge?
- 19 a Separate into real and imaginary parts tan⁻¹(x+iy).

OR

- b Expand $\sin^3\theta\cos^5\theta$ in a series of sines of multiples of θ .
- 20 a Prove that if $\log(\theta + i\phi) = A + ib$ then $2e^{2A} = \log 2\phi \cos(2\phi)$..

OR

b If $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, find the sum to infinity of the series $1 + \frac{1}{2}\cos 2\theta - \frac{1}{2.4}\cos 4\theta + \frac{1.3}{2.4.6}\cos 6\theta....$

Z-Z-Z

END