Maximum: 75 Marks

PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2022

(Sixth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

DISCRETE MATHEMATICS AND GRAPH THEORY

Time: Three Hours

	${f s}$	ECTION-A (10 Marks)	
		Answer ALL questions	
	ALL que	estions carry EQUAL marks (10 x	1 = 10)
1	$(P \land \neg P) \lor Q$ is equivalent	to	
	(i) Q	(ii) $\neg P \lor Q$	
· / .		(iv) <i>P</i>	
	(iii) $P \land \neg P$		
2	In Normal forms, the word 'Product' is used in the place of		
-	(i) Disjunction	(ii) Conjunction	
	(iii)Conditional	(iv) Biconditional	
3	Introduction of a premise at	t any stage of derivation is rule	•
	(i) T	(ii) P (iv) US	
	(iii) CP	x is a man and y is a mortal", where M	(x): x is a man
4	Symbolize the statement	X is a man and y is a moral, where	y): y is a mortal
	(i) M(-) A U(v)	(ii) $M(x) \vee H(y)$	
	(i) $M(x) \wedge H(y)$ (iii) $M(x) \rightarrow H(y)$	(iv) $M(x) \land \sim H(y)$	
	$(III) W(x) \rightarrow H(y)$		
	D. t the characteri	istics of the relation aRb if $a^2=b^2$	
5		******	metry
	(iii) Antisymmetry and I	rreflexive(iv) Symmetric, Reflexive	e and Transitive
6	The number of equivalen	nce relations of the set $\{3,6,9,12,18\}$	} 1S
, U	(i) 4	(11) 2	
	(iii) 22	(iv) 10	
7, .	The degree of any verte	x of graph is	
	(i) Number of vertex i	in a graph	
	(ii) The number of edg	res in a graph	4
	(iii) The number of edg	s adjacent to that vertex	
	(iv) Number of vertices	S adjacent to that version	
	If the origin and terminus (of a walk are same, the walk is know	vn as
8	(i) Open	(ii) Closed	
	(iii) Path	(iv) Chain	
		1 verte annul on 12 ver	ices is
9		edges in a bipartite graph on 12 vert	1005 15
	(i) 36	(ii) 24 (iv) 12	
	(iii) 6		
1	0 If G is a forest with n verti	ices and K connected components, t	hen how many edges
	does G have?		
	(i) n/k	(ii) n-k	•
 	(iii)n-k+1	(iv)n-k-1	Cont
		· · · · · · · · · · · · · · · · · · ·	

<u>SECTION - B (25 Marks)</u>

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 5 = 25)$

Show that $(P \rightarrow Q) \Leftrightarrow (\neg P \lor Q)$ 11 a

- Show that the formula $Q \lor (P \land \neg Q) \lor (\neg P \land \neg Q)$ is a tautology. b
- Show $I_{12} : \neg Q, P \rightarrow Q \Rightarrow \neg P$ 12 a

- Show that $(x)(P(x) \to Q(x)) \land (x)(Q(x) \to R(x)) \Rightarrow (x)(P(x) \to R(x))$. b
- Let $X=\{1,2,3,4\}$ and $R=\{\langle x,y\rangle/x\geq y\}$. Draw the graph of R and also its matrix. 13 a
 - Let R and S be two relations on a set of positive integers I:R= $\{\langle x,2x\rangle/x\in I\}$ $S=\{\langle x,7x\rangle/x\in I\}$. Find RI S, RI R, RI RI R and RI SI R. b
- Explain any one applications of graph theory. 14 a

- Define subgraph with an example and write some observations of subgraph. b
- Define Euler graph and Hamiltonian circuit and draw a graph in which an 15 a Euler line is also a Hamiltonian circuit.

Prove that there is one and only one path between every pair of vertices in a tree T. b

SECTION -C (40 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 8 = 40)$

16 a Show that (i) $\neg (P \land Q) \rightarrow (\neg P \lor (\neg P \lor Q) \Leftrightarrow (\neg P \lor Q)$

$$(ii) (P \lor Q) \land (\neg P \land (\neg P \land Q) \Leftrightarrow (\neg P \land Q)$$

b Obtain the principal disjunctive normal forms of

(i) $\neg (P \lor Q)$

(ii)
$$(P \wedge Q) \vee (\neg P \wedge R) \vee (Q \wedge R)$$

- 17 a Show that the following premises are inconsistent.
 - 1. If Jack misses many classes through illness, then he fails high school.
 - 2. If Jack fails high school, then he is uneducated.
 - 3. If Jack reads a lot of books, then he is not uneducated.
 - 4. Jack misses many classes through illness and reads a lot of books.

- Show that $(x)(P(x) \lor Q(x)) \Rightarrow (x)P(x) \lor (\exists x)Q(x)$
- Discuss the properties of Binary relations in a set with a suitable example. 18 a

- Let F_x be the set of all one-to-one onto mappings from X onto X, where $X=\{1,2,3\}$. Find all the elements of F_x and find the inverse of each element.
- 19 a Draw any two graphs and discuss the isomorphism.

- Prove that a simple graph (i.e., a graph without parallel edges or self-loops) with n vertices and k component can have at most (n-k)(n-k+1)/2 edges.
- 20 a Discuss the various operations between graphs with an example.

b Prove that a graph is a tree if and only if it is minimally connected.

Z-Z-Z

END