PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2022

(Second Semester)

Branch-BIOTECHNOLOGY

GENETICS

	Time: Three Hours Maximum: 50 Marks
	SECTION-A (5 Marks)
	Answer ALL questions
•	ALL questions carry EQUAL marks $(5 \times 1 = 5)$
• .	Name the X linked genes responsible for abnormal conditions that pass the harmful allele to
	sons while daughters are carriers.
	(i) Ataxia (ii) Hemophilia
	(iii) Hypertrichosis (iv) Webbed toes
<u>.</u>	Identify the disease where tumor suppressor gene is mutated in chromosome 13 that
	regulate the cell cycle and maintain balance of cell growth resulting in inherited cancer in
:	children.
	(i) Crude-chat syndrome (ii) Chimera
	(iii) Mosaic (iv) Retinoblastoma.
}.	Specify cytoplasmic male sterility condition widespread among higher plants that represent a
	valuable tool in hybrid seed production in self-pollinating crop species where the plant is
	unable to produce functional
	(i) peduncle (ii) pollen
	(iii) stamen (iv) stigma
ŧ.	Mention the fatal disease in children usually by age 5 that causes progressive
	degeneration of the central nervous system caused by the absence of the hexamidase A gene.
	(i) Cystic fibrosis (ii) Achondroplasia
	(iii) Sickle cell anemia (iv) Tay Sach's
5.	State the implication of Hardy-Weinberg principle that specify the rare alleles are more
	likely to be present among ——— individuals.
	(i) Heterozygous (ii) Homozygous
	(iii) Random (iv) Assortative
	SECTION - B (15 Marks)
	Answer ALL Questions
٠.	ALL Questions Carry EQUAL Marks $(5 \times 3 = 15)$
6	a Differentiate allelic and non-allelic interactions with suitable examples.
	\mathbf{OR}
	b Explain the concept of epistasis and give note on its significance.
7	a Describe human traits and elaborate on the chromosome theory of inheritance.
	OR
	b State the effect of deletion, duplication, inversion and translocation changes in
	Chromosome with suitable examples.
3	a Outline the significance of cytoplasmic inheritance, role of organellar genes and
. • .	cytoplasmic male sterility.
	OR
	b Narrate meiotic pairing and give note on autosyndesis and allosyndesis.

Cont...

18BTU07

Cont...

- 9 a Show the X linked and Y linked inheritance of genetic disease with suitable examples.
 - b Describe multifactorial inheritance of congenital malformation, cleft lip and palate, rheumatoid arthritis and diabetes.
- 10 a Bring out the concept of random mating population and give its significance.
 - b Summarize genetic drift, migration and effect of mutation on population.

SECTION -C (30 Marks)

Answer ALL questions
ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a Compare the variation in number and structure of chromosomes in Euploidy, Non disjunction and aneuploidy with examples.

OR

- b Elaborate on linkage and write an account on the concept of recombination and linkage mapping.
- 12 a Describe epigenetics and give notes on histone, chromosome modification and chromosome remodelling.

OR

- b Enumerate the structural changes in chromosomes resulting in genetic diseases Cri-duchat syndrome and retinoblastoma.
- 13 a Summarize the cytological and genetic methods of identification of ploidy in plants with suitable diagrams.

OR

- b Outline heterosis, their genetic basis and its prediction. Write note on F2 heterosis.
- 14 a Highlight the different autosomal dominant and autosomal recessive inheritance of genetic disease with examples and give their inheritance pattern.

OR

- b Point out different mitochondrial disorders like LHON, DAD, MERRF and MELAS.
- 15 a Distinguish Hardy- Weinberg principle, non-random mating and write note their influence on genetic variations.

OR

b Discuss hierarchical populations, effect of isolate breaking, inbreeding and assortative and non assortative mating on population genetics.

END

Z-Z-Z