10. The	is a	a non-parameti	ric test	to the	t-test for related samples	
(i) unbiased te	st				(ii) Sign test	
(iii) Run test					(iv) Mann-Whitney U tes	ŧ

SECTION - B (35 Marks)

Answer ALL Questions
ALL Questions Carry EQUAL Marks (5 x 7 = 35)

11. a. State and prove invariance property of consistent estimators.

(Or)

b. Prove that an minimum variance unbiased estimators is unique if T_1 and T_2 are minimum variance unbiased estimators for $\gamma(\theta)$, then $T_1 = T_2$, almost surely.

12. a. Let $x_1, x_2, ..., x_n$ be a random sample from a uniform population over $[0, \theta]$. Find the sufficient statistic for θ .

(Or)

- b. State and prove Rao Blackwell theorem.
- 13. a. Find the maximum likelihood estimator for the parameter λ of a Poisson distribution on the basis of a sample of size n, and obtain its variance.

(Or)

- b.Describe the method of moments for estimating the parameters.
- 14. a. Write short notes on prior and posterior distribution with an suitable example (Or)
 - b. Obtain $100(1 \alpha)\%$ confidence intervals for (small samples) the parameter θ of the normal distribution.
- 15. a.Define probability density function of single order statistic Distribution of range.
 - b. Explain Mann Whitney U test?

SECTION - C (30 Marks)

Answer any THREE Questions
ALL Questions Carry EQUAL Marks (3 x 10 = 30)

- 16. State and prove Cramer Rao inequality.
- 17. State and prove Neymann Factorization theorem.
- 18. In random sampling from normal population $N(\mu, \sigma^2)$, find the maximum likelihood estimators for (i) μ when σ^2 is known (ii) σ^2 when μ is known (iii) the simultaneous estimation of μ and σ^2 .
- 19. A random sample of 16 is taken from a normal population showed a mean of 41.5 inches and the sum of squares of deviations from this mean equal to 135 square inches. Show that the assumption of a mean is 43.5 inches for the population is not reasonable. Obtain 95% and 99% confidence limit for the pollution is reasonable or not..

(given $t_{0.05}$ for 15d. f = 2.131 and $t_{0.01}$ for 15d. f = 2.947)

20. Explain chi-square test for goodness of fit.

PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2022

(Fourth Semester)

Branch - STATISTICS

BASIC SAMPLING THEORY

Ji. J	ine. Thee flours		iviaxiiiiuii	ii. 75 iviaiks
		Answer	N-A (10 Marks) ALL questions arry EQUAL marks	$(10 \times 1 = 10)$
1.	In SRSWOR the e	stimation of population	total \hat{Y} with n samples is	•
	$(i)\frac{\bar{Y}}{N}$	(ii) $N \overline{y}$	(iii) $\frac{\bar{y}}{n}$	(iv) $\frac{N}{n}\bar{y}$
2.	Sample is regarded	d as the subset of	-•	
	(i) data	(ii) set	(iii) distribution	(iv) population
3.	The difference be the sample is calle (i) sum of error (iii) mean square e	d	of the parameter and estima (ii) margin of error (iv) standard error	ted value $ar{y}_n$ provided by
4.	The probability of	selecting a unit in the	5 th draw in SRSWOR of 12	2 units is
•	(i) 1/11	(ii) 1/5	(iii) 1/12	(iv)1/8
5.	If the sample fract called (i) Neyman allocation (iii) proportional at	tion	drawn then the allocation of (ii) optimal allocati (iv) randomallocat	on
6.	The estimated variation of the stimated variation (i) $\sum \frac{w_i^2 S_i^2}{n_i} - \sum \frac{w_i S_i}{N}$ (iii) $\sum \frac{w_i^2 S_i^2}{n_i} + \sum \frac{w_i}{N}$	<u>2</u> 	hted mean from the stratification (ii) $\sum \frac{w_i^2 S_i^2}{n_i}$ (iv) $\sum \frac{w_i^2 S_i^2}{n_i} + \sum \frac{w_i S_i}{n}$	
7.	The variance of th	e sample estimate of th	e population mean is inver	sely proportional to the
	(i) population vari	ance	(ii) sample size (iv) sample error	
8.	Let N be the popu	lation units and n is the	sample size then k, the same	npling interval is equals
	to			
	(i) $\frac{N}{n}$	(ii) Nn	(iii) $N-n$	(iv) $\frac{N}{n^2}$
9.	Let x_i the auxiliar	y variate correlated with	y_i then the ratio estimator	of Y is
	(i) $\hat{Y}_R = \frac{x}{\bar{x}}$	(ii) $\hat{Y}_R = \bar{y}\bar{x}$	(iii) $\hat{Y}_R = \frac{\bar{y}}{\bar{x}} X$	(iv) $\hat{Y}_R = \frac{\bar{y}\bar{x}}{\bar{x}}$
10	estimate $\bar{y}_{lr} = $	•	a preassigned constant the $ (iii) \ \bar{y} + b_0 (\bar{X} - \bar{x}) $	
				· ·