PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2022

(First Semester)

Branch - PHYSICS

MATHEMATICS - I

Time: Three Hours

Maximum: 50 Marks

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(5 \times 1 = 5)$

- 1. The locus of the center of curvature for a curve is called the ----- of the curve.
 - (i) Radius

(ii) Evolute

(iii) Elocute

(iv) Coordinates

- 2. $\int_{a}^{b} x^{3} dx =$
 - (i) $\frac{a^4}{4} \frac{b^4}{4}$ (iii) $b^4 a^4$

(ii) $\frac{b^4}{4} - \frac{a^4}{4}$ (iv) $a^4 - b^4$

- 3. $\int_0^2 \int_0^2 dx dy =$

(ii) 4

(iii) 1/8

- (iv) 8
- 4. The vector V is said to be solenoidal then ---
 - (i) $\nabla \times V = 0$

(ii) $\nabla \times \nabla V = 0$

(iii) $\nabla \cdot V = 0$

- (iv) $\nabla \cdot \nabla V = 0$
- 5. Green's theorem states that
 - $\int_{C} Ndx + Mdy = \int_{R} (N_{x} M_{y}) dx dy$
 - (ii) $\iint_{R} Mdx + Ndy = \int_{C} (N_{x} M_{y}) dxdy$
 - (iii) $\int_C Mdx + Ndy = \iint_R (N_x M_y) dx dy$
 - (iv) $\int_C (M+N)dx = \iint_R (N_x M_y) dx dy$

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

6. a. Find the radius of curvature of the curve $x^4 + y^4 = 2$ at (1,1)?

- b. Find the coordinates of the center of curvature of the curve xy = 2 at (2,1).
- 7. a. Evaluate $\int x \sin 2x \ dx$.

- b. Calculate $\int_0^{\frac{\pi}{2}} \sin^6 x \cos^5 x \ dx$.
- 8. a. Compute $\int_0^a \int_0^b (x^2 + y^2) dx dy$.

b. Compute $\int_{0}^{3} \int_{1}^{5-x} x^{2}y \, dx \, dy$.

Cont...

9. a. Find the directional derivative of the function $x^2 + y^2 + z^2$ at (3,6,9) in the direction whose direction cosines are $(\frac{1}{2}, \frac{2}{3}, \frac{2}{3})$.

OR

- b. Show that the vector $A = x^2z^2i + xyz^2j xz^3k$ is solenoidal.
- 10.a. Find the value of the integral $\int A \, dr$, where A = yzi + zxj xyk for the curve whose parametric equations are x = t, $y = t^2$, $z = t^3$ from O(0,0,0) to Q(2,4,8).
 - b. Show that $\iint r \cdot n \, dS = 4\pi a^3$, if S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

- 11.a. Prove that the radius of curvature at any point of the cycloid $x = a(\theta + \sin\theta)$ and $y = a(1 \cos\theta)$ is $4a\cos\frac{\theta}{2}$.
 - b. Show that in the parabola $y^2 = 4ax$ at the point t, $\rho = -2a(1+t^2)^{3/2}$, $X = 2a + 3at^3$, $Y = -2at^3$. Deduce the equation of the evolute.
- 12.a. Evaluate $\int x^3 \cos 2x \, dx$.

OR

- b. Evaluate $\int_0^{\frac{\pi}{2}} x (1 x^2)^{\frac{1}{2}} dx$.
- 13. a. Change the order of integration in the integral $\int_0^a \int_{\frac{x^2}{a}}^{2a-x} xy \, dx \, dy$ and evaluate it.

OR

- b. Find the area of the cardioid $r = a(1 + \cos \theta)$.
- 14. a. Find $\nabla \cdot \overline{F}$ and $\nabla \times \overline{F}$ at the point (1, -1, 1) if $\overline{F} = xz^3\overline{\iota} 2x^2yz\overline{\jmath} + 2yz^4\overline{k}$.
 - b. If $\overline{F} = x^2 y \overline{\imath} + y^2 z \overline{\jmath} + z^2 x \overline{k}$, then find curl curl \overline{F} .
- 15. a. State and prove Gauss' Divergence theorem.

OR

b. Evaluate by using Green's theorem $\int_C (xy + x^2) dx + (x^2 + y^2) dy$, where C is the square formed by the lines x = -1, x = 1, y = -1, y = 1 in the XOY plane.

Z-Z-Z