PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MCA DEGREE EXAMINATION DECEMBER 2023

(First Semester)

Branch - COMPUTER APPLICATIONS

DATA STRUCTURES AND ALGORITHMS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks) Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

ALL questions carry EQUAL marks $(10 \times 1 = 10)$						
Module No.	Question No.	Question	K Level	со		
1	1	In stack, deletions are performed at the end called a. front b. rear c. top d. bottom	K1	CO1		
	2	In a traversal, work at a node is performed before its children are processed. a. preorder b. in order c. post order d. none of the above	K2	CO1		
2	3	A complete binary tree of height h has between and nodes. a. 4h, 4h+1-1 b. 2h, 2h+1-1 c. 4h, 4h-1-1 d. 2h, 2h+1-1	K1	CO2		
	4	By the heap-order property, the minimum element can always be found at the node. a. left b. root c. leaf d. non-leaf	K2	CO2		
3	5	The for each edge in the event-node graph represents the amount of time that the completion of the corresponding activity can be delayed without delaying the overall time. a. slack time b. surplus time c. amortized time d. event time	K1	CO3		
	6	Dijkstra's algorithm is an example of a a. greedy algorithm b. divide-and-conquer approach c. backtracking algorithm d. branch-and-bound approach	K2	CO3		
4	7	In each item must be placed in a bin before the next item can be processed. a. offline bin packing b. online bin packing c. hashing d. de-hashing In approximate bin packing, the strategy places	K1	CO4		
	8	In approximate bin packing, the strategy places a new item in the tightest spot among all bins. a. first fit b. next fit c. best fit d. worst fit	K2	CO4		
5	9	Operations on red-black trees take in the worst case. a. O(log N) b. 2 log(N + 1) c. 2 log N d. 2 log(N-1)	K1	CO5		
	10	The has rotations such as zig, zig-zig and zig-zag. a. k-d tree b. top-down splay tree c. red-black tree d. suffix tree	K2	CO5		
				Cont		

Cont...

 $(5\times7=35)$

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

Module No.	Question No.	Question	K Level	СО
1	11.a.	Describe binary tree and its operations.	K4	201
		(OR)		CO1
	11.b.	Examine the functions of the queue ADT.		
2	12.a.	Explore the properties and operations on leftist heaps.		CO2
		(OR)	K4	
	12.b.	Analyze the operations of a binomial queue.		
3	13.a.	Interpret the Prim's algorithm for finding the minimum spanning tree.	K5	002
		(OR)		CO3
	13.b.	Explain the maximum-flow algorithm with an example.		
4	14.a.	Evaluate the closest-points problem in the divide- and-conquer approach.	K5	201
		(OR)		CO4
	14.b.	Estimate the best fit algorithm to solve the bin packing problem.	1	
5	15.a.	Discuss the functionality of pairing heaps.		
		(OR)		CO5
	15.b.	Deliberate the working of suffix trees.		

SECTION -C (30 Marks) Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

ADD question and a second a second and a second a second and a second a second and a second and a second and a second and						
Module No.	Question No.	Question	K Level	СО		
1	16	Infer the operations of AVL trees.	K4	CO1		
1	10					
2	17	Examine the properties and operations of a binary heap.	K4	CO2		
3	18	Explain Dijkstra's algorithm to solve the single-source shortest-path problem.	K5	CO3		
4	19	Interpret the aspects of dynamic programming.	K5	CO4		
5	20	Discuss about Red-Black trees and its operations.	K6	CO5		
) 3	20					