PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

MSc(SS) DEGREE EXAMINATION DECEMBER 2023

(Third Semester)

Branch - SOFTWARE SYSTEMS (Five Year Integrated)

TRANSFORMATION TECHNIQUES

Time: Three Hours Maximum: 50 Marks

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(5 \times 1 = 5)$

The Laplace transform of 2^{t} is ____. (i) $\frac{1}{s-log 2}$ (ii) $\frac{1}{s-2}$ (iii) $\frac{1}{2s}$ (iv) $\frac{1}{s}$ 1.

Inverse Laplace transform of $\frac{1}{s^5}$ is _____.

(ii) $\frac{t^4}{12}$ (iii) $\frac{t^4}{24}$ (iv) t^3 (i) $\frac{t^5}{24}$

 $f(k) = 1, k \in N$ is a _____ sequence. (i) Kronecker delta ____ (ii) Unit step (iii) Unit ramp (iv) ramp

If F(w) is the Fourier transform of f(t) then $F[f(t-\alpha)] = _____$ 4. $\overline{\text{(iv)}} e^{-j\alpha w} F(w)$ (i) $e^{j\alpha w}F(w)$ (ii) $e^{\alpha w} F(w)$ (iii) F(w)

The discrete fourier transform F(k) is periodic with period N then _____. 5.

(i) F(kN) = F(k)(ii) F(k+N) = F(k)(iii) F(k+N) = kF(k)(iv) $F(k+N) = f(k^2)$

SECTION - B (15 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 3 = 15)$

(a) Find Laplace transform of (i) t sint (ii) e^{-3t} sinh4t 6.

(b) Find Laplace transform of (i) $\frac{1}{3}sin3t - 4cos(\frac{t}{2})$ (ii) sinh2t + 3cosh2t

(a) Find the inverse Laplace transform of $\frac{6s-5}{(s+5)(s+3)}$. 7.

(b) Find the inverse Laplace transform of $\frac{2s+1}{s^2-2s+2}$.

(a) Find the z transform of the sequence defined by $f[k] = k, k \in \mathbb{N}$. 8.

(b) Find the z transform of $e^{-2k} cosk$.

(a) Find the Fourier transform of the function $f(t) = u(t)e^{-t}$, where u(t) is the unit 9. step function.

(b) Find the Fourier transform of $f(t) = \begin{cases} 1 - \frac{t}{2} & 0 \le t \le 2\\ 1 + \frac{t}{2} & -2 \le t \le 0\\ 0 & otherwise \end{cases}$

- 10. (a) Find the inverse discrete fourier transform of the sequence F[k], for k = 0, 1, 2, 3 given by F[k] = -4, 1, 0, 1.
 - (b) Calculate the circular convolution, h[n] = f * g, of the two periodic sequences f[n] = 9, -1, 3 and g[n] = 7, 2, -4.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 6 = 30)$

- 11. (a) State Final value theorem. Verify Final value theorem for $f(t) = e^{-t} sint$. (OR)
 - (b) Find Laplace transform of 3y'' y' + 2y = 0 given that y(0) = 3, y'(0) = 1.
- 12. (a) (i) Find f * g when f = 1, g = t (ii) Use the convolution theorem to determine the inverse Laplace transform of $\frac{1}{s^2(s+1)}$.

(b) Using Laplace transform solve x'' - 5x' + 6x = 6t - 4 given that x(0) = 1, x'(0) = 2

13. (a) The continuous signal $f(t) = \cos(\frac{\pi t}{2})$ is sampled at 1 second intervals starting from t = 0.

(i) Find the Laplace transform of the sampled signal $f^*(t)$.

(ii) Show that F*(s) has an infinity of poles.

(iii) Find the z transform of the sampled signal and show that this is just two poles.

(OR)

- (b) Find the sequence whose z transform is

 (i) $F(z) = \frac{2z^2 z}{(z 5)(z + 4)}$. (ii) $F(z) = \frac{z + 3}{z 2}$
- 14. (a) Show that the Fourier transform of $f(t) = \begin{cases} 3 & -2 \le t \le 2 \\ 0 & elsewhere \end{cases}$ is given by

 $F(\omega) = \frac{6\sin 2\omega}{\omega}$. Use the first shift theorem to find the Fourier transform of $e^{-jt}f(t)$. Also verify the first shift theorem by obtaining the Fourier transform of $e^{-jt}f(t)$ directly.

(OR)

- (b) Calculate the convolution f * g when $f(t) = u(t)e^{-t}$ and $g(t) = u(t)e^{-2t}$, where u(t) is the unit step function. Also verify the convolution theorem for these functions.
- 15. (a) Find the d.c.t., F[k] of the sequence f[n] = 2, 4, 6. Also apply the inverse d.c.t. to F[k] and show that the original sequence, f[n], is obtained. (OR)
 - (b) Use the (Circular) convolution theorem to find f * g when f[n] = 5, 4 and g[n] = -1, 3.