PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2023

(First Semester)

Branch: BIOTECHNOLOGY

METABOLIC REGULATION

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Question	Question	K Level	CO
No.		Level	
1	The rate of breakdown of metabolites is termed as	K1	CO1
	a) Metabolic state b) Metabolism	KI	001
	c) Steady state d) Homeostasis		
2	Glucose level can be controlled by a) insulin b) glucagon	K2	CO1
	a) insulin b) glucagon clustering and clustering d)epinphrine	1.2	
	c) both insulin and glucagon d)epinphrine		
3	Glycolysis is termed as a) EMP pathway b) HMP shunt c)TCA cycle d)glucose regulatory process	K1	CO1
3	a) EMF paulway d) glucose regulatory process		
	Gluconeogenesis is		
	a) synthesis of glucose from noncarbohydrate		
4	b) synthesis of glucose from carbohydrate	K2	CO1
	c) synthesis of glycogen from noncarbohydrate		
	d) synthesis of glycogen from noncarbohydrate		
	Nucleotides are		
	a) Purine bases		
5	b) Nitrogen bases+ Pentose Sugar	K1	CO1
	c) Nitrogen bases + Pentose sugar + Phosphate		
	d) None of the above		
	Which of the following is not the precursor for the de		
,	novo purine biosynthesis?	K2	CO1
6	a) Aspartic Acid b) Glycine		
	c) Glutamine d) Arginine		
	Free fatty acids in the plasma		
	a) Circulate in the unbound state	17.1	CO1
7	b) Bind to lipoproteins and circulated	K1	COI
	c) Bind to albumin and circulated		
	d) Bind to a fatty acid-binding protein and circulated	-	-
	Identify the key regulators of the ketogenic pathway?	K2	COI
8	a) Acyl CoA/CoA ratio b) NADH/NAD ratio	N2	COI
	c) Insulin/Glucagon ratio d) All of the above	-	
	Which of the following samples is usually taken for the		
9	liver function test? a) Blood sample b) Urine sample	K1	CO1
	a) Blood sample c) Intestine Biopsy sample d) Sputum sample		
	Which of the following enzyme is a sensitive marker of		
	alcoholic liver disease?	***	001
10		K2	CO1
10	a) Alanine transaminase b) Aspartate transaminase	3	

Cont...

22BTP105N/22BTP105

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Question No.	Question	K Level	СО
11.a.	Illustrate ATP hydrolysis and identify its role in energy metabolism.	К3	CO1
	(OR)		COI
11.b.	Examine role of insulin in metabolic regulation.		
12.a.	Enlist enzymes involved in regulation of TCA cycle and	K3	CO1
12.a.	their application.		
	(OR)		COI
12.b.	Explain glycogen metabolism and its utility.		
13.a.	Explain transamination.		
(OR)		K4	CO1
13.b.	Outline nucleic acid metabolism.		
14.a.	Explain lipogenesis of palmitic acid.		
(OR)		K5	CO4
14.b.	Explain regulation of cholesterol metabolism.		
15.a.	Discuss role of ethanol in energy metabolism in liver.		
(OR)		K.5	CO5
15.b.	Construct metabolic profiles of kidney.		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Question No.	Question	K Level	СО
16	Analyse the importance cyclic AMP dependent protein kinase.	K4	CO1
17	Illustrate TCA cycle.	K4	CO2
18	Choose proteolysis and proteasome system.	K4	CO3
19	Explain oxidation of fattyacids.	K5	CO4
20	Explain liver and muscle metabolic adaptation in prolonged starvation.	K5	CO5