PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2023

(First Semester)

Branch - STATISTICS

REAL ANALYSIS AND LINEAR ALGEBRA

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 1 = 10)$

Module No.	Question No.	Question Question	K	
1	1	If both right hand limit and left hand limit exist but are not equal in value then the limit of f as x→a a) Exist b) does not exist c) converges d) diverges	Leve K1	C
	2	Find c of the mean value theorem if $f(x) = x(x-1)(x-2)$; a=0 b=1/2 a) $\frac{6-\sqrt{21}}{6}$ b) $\frac{6}{26}$ c) $\frac{6\sqrt{21}}{6}$ d) $\frac{\sqrt{21}}{6}$	K2	C
2	3	If a sequence $\{s_n\}$ has a limit 1 then $\{s_n\}$ converges to 1 is a) Divergent sequence b)convergent sequence c) Monotonic sequence d) Uniform sequence	K1	C
	4	The series ΣU_n is convergent if limit $(U_n)^{1/n}$ is a) less than zero b) equal to one c) greater than 1 d) less than one	K2	C
3	5	The lower Riemann integral of f over [a,b] denoted by (R) $\int_{-a}^{b} f \text{ is given by}$ a) (R) $\int_{-a}^{b} f = \sup \{L(f,P) P \text{ a partition of [a,b]}\}$ b) (R) $\int_{-a}^{b} f = \inf \{U(f,P) P \text{ a partition of [a,b]}\}$ c) (R) $\int_{-a}^{b} f = \sup \{U(f,P) P \text{ a partition of [a,b]}\}$ d) (R) $\int_{-a}^{b} f = \inf \{L(f,P) P \text{ a partition of [a,b]}\}$	K1	CC
	6	If $f_1(x) \le f_2(x)$ on $[a,b]$ then a) $\int_a^b f_1(x) d\alpha \le \int_a^b f_2(x) d\alpha$ b) $\int_a^b f_1(x) d\alpha = \int_a^b f_2(x) d\alpha$ c) $\int_a^b f_1(x) d\alpha \ge \int_a^b f_2(x) d\alpha$ d) $\int_a^b f_1(x) d\alpha \ne \int_a^b f_2(x) d\alpha$	K2	СО
4		Let V be a vector space and W be a subspace of V then a) $U + V = V + U$, $\forall U, V \in W$ b) $k \cup W$, $\forall u \in W$, $k \in W$	K1	CO
	8	Any subset of a linearly independent set is a) Linearly dependent b) Linearly independent c) Space d)basis	K2	CO
5		The characteristic roots of the matrix $\begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$ is a) 2,2 b) 3,2 c) -2,2 d) -3,3	K1	COS
	10	The nature of quadratic form $X_1^2 + 2X_2^2$ is a) Negative definite b) Positive definite c) negative semi definite d) Positive semi definite	K2	CO5

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	СО
1	11.a.	Prove that if f is continuous in the closed interval [a,b] then f(x) is bounded in [a,b].		
	(OR)			CO1
	11.b.	Let $I =]a, b[$ and let f,g be two functions on I into R then Prove that $(f\pm g)' = f \pm g'$		
2	12.a.	Using the definition of limit of a sequence show that the sequence $\{s_n\}$ has the limit 3 where $s_n = 3n/(n+5n^{1/2})$.	***	CO2
		(OR)	K3	
	12.b.	State and Prove Dirichlet's test.		
3	13.a.	If f is continuous on [a,b] then prove that f is R-integrable on [a,b].	K2	tee t
	(OR)			CO3
	13.b.	State and Prove second Mean Value Theorem.		
4	14.a.	Prove that intersection of two subspaces of a vector space is a subspace.		
	(OR)			CO4
	14.b.	Let V be the vector space of polynomials with inner product given by $\langle f, g \rangle = \int_0^1 f(t)g(t) dt$. Let $f(t) = t+2$ and $g(t) = t^2-2t-3$ find (i) $\langle f, g \rangle$ and (ii) $ f $	K.5	
5	15.a.	State and Prove Cayley Hamilton Theorem.		
	(OR)			CO5
	15.b.	Explain canonical representation of a quadratic form.		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	со
1	16	State and Prove Taylor's theorem.	K2	CO1
2	17	Find the series $\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$ is convergent if $p > 1$, divergent if $p \le 1$	K1	CO2
3	18	State and prove Fundamental theorem of Integral Calculus.	K2	CO3
4	19	Prove that every finite dimensional inner product space has an orthogonal basis.	K5	CO4
5	20	Determine the Characteristics Roots and Characteristic Vector of the matrix 2 2 0 A= 2 1 1 -7 2 -3	K5	CO5