PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2023

(Third Semester)

Branch - CHEMISTRY

MOLECULAR SPECTROSCOPIC METHODS AND ITS APPLICATIONS

Time: Three Hours Maximum: 50 Marks

SECTION-A (5 Marks)

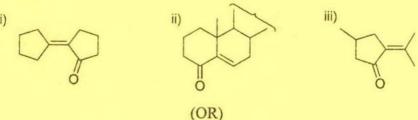
Answer ALL questions

ALL questions carry EQUAL marks

 $(5 \times 1 = 5)$

1.	When	transition between states of th	ne same multiplicity	occurs without emitting light is c	alled
	(i)	Fluorescence	(ii)	Internal conversion (IC)	
	(iii)	Quenching	(iv)	Intersystem crossing (ISC)	

- 2. The correct order of decreasing stretching frequencies of the bonds in IR spectroscopy. O-H, S-H, C-H and N-H
 - (i) C-H > O-H > N-H > S-H (iii) S-H > O-H > N-H > C-H > S-H (iv) O-H > C-H > N-H > S-H
- How many signal(s) would you expect from cyclooctatetraene in its ¹H-NMR spectrum?
 (i) Two signals centered at 5.68 ppm
 (ii) One signal (singlet) at 5.68 ppm
 - (iii) Two signals at 1.2 ppm and 5.68 ppm (iv) Two signals at 1.2 ppm
- 4. In the proton decoupled ¹³C NMR spectrum of 7-norbornanone, the number of signals obtained is
 - (i) 7 (iii) 4 (ii) 3 (iv) 5
- Number of hyperfine lines have been observed in the ESR spectrum of benzene radical anion are
 - (i) 5 (iii) 7 (ii) 6 (iv) 8


SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

6. (a) The λ_{max} values of the following compounds are 242 nm, 254 nm and 259 nm in ethanol. Which is for which?

- (b) How o-nitroaniline can be distinguished from p-nitroaniline from UV spectroscopy?
- 7. (a) How many fundamental vibrational frequencies can be observed in the IR absorption spectrum of water?

(OR)
(b) Why vibrations involving polar bonds are weak Raman scatterers?

8. (a) Explain why ¹H-NMR spectrum of CH₃OH in CCl₄ shows two singlets but in (CD₃)₂SO it shows a doublet and a quartet.

(OR)

How can you distinguish between the following pair by ¹H-NMR?

CH₃-CH₂-C≡C-H and CH₃-C≡C-CH₃

9. (a) Intensities of methyl, methylene and methane carbons differ in ¹³C-NMR. Explain.

(OR)
(b) What are the advantages of 2D NMR over the 1D NMR spectra?

Cont...

Cont...

10 (a) How many lines are expected in the ESR spectrum of radical anion derived from p-xylene and p-benzosemiquinone?

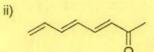
(OR)

(b) When the Mossbauer effect will occur?

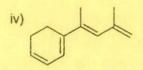
SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks


 $(5 \times 6 = 30)$

11 Distinguish the following pair isomers by UV-VIS spectroscopic (a) technique.


 $(4x 1\frac{1}{2} = 6)$

(OR)

- i) Illustrate charge transfer transitions with suitable example. (b) ii) The complex [Ti(H₂O)₆]⁺ absorbs green and yellow light from the
 - white light and appears purple. Why? (3)
- i) How IR spectroscopy can be used to distinguish between the 12 (a) following compounds? (3)

- ii) How is the O-H absorption peak shifted by replacing H by D?
- iii) Distinguish the effect of dilution by carbon tetra chloride on IR absorption of O-H stretching of ethanol.

(2)

(1)

(3)

(4)

- i) Differentiate IR and Raman Spectroscopy. (b) ii) Show fundamental modes of vibration of CO2 and predict which
 - (2)modes will be infrared active and which will be Raman active?
- What are the factors influencing chemical shift? Explain them briefly. 13 (a) (OR)
 - i) Explain nuclear overhauser effect of double resonance technique. (3) (b)
 - (3) ii) Write short note on relaxation process.
- (3+3)14 Write notes of the following. (a)
 - i) Factors affecting vicinal coupling in ¹³C NMR ii) Off resonance technique in 13C NMR

(OR)

- Determine the structure the complexes of WF6 and BOF4 using 13C NMR (b) spectroscopy.
- i) Derive structural information from the complex ion [(NH₃)₅Co-O-O-15 (a)
 - (2) $Co(NH_3)_5^{5+}$. (4) ii) Explain zero field splitting with one example.
 - (OR)
 - Explain the applications of Mossbauer spectroscopy to inorganic compounds. (b)