PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMEBR 2023

(First Semester)

Branch - CHEMISTRY

ORGANIC REACTION MECHANISM AND STEREOCHEMISTRY

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks $(10 \times 1 = 10)$

ALL questions carry EQUAL marks $(10 \times 1 = 10)$						
Module No.	Question No.	Question	K Level	со		
1	1	Hyper conjugation is shown by molecule containing a) C-H bond and a α C=C bond b) Only C-H bond c) Only C=C bond d) No C=C bond	K1	COI		
	2	Which of the following has more –I effect? a) -NO ₂ b) Only -COOH c) -Br d) C ₆ H ₅ -	K2	CO1		
2	3	Azulene has a) 18π electrons b) 20π electrons c) 10π electrons d) 14π electrons	K1	CO2		
	4	Consider the following statements about aromatic compounds. Which of the statements are correct? i) They are planar compounds ii) They are annulenes having 4π electrons iii) They retain a ring current iv) They contain a localized π -electron cloud having $(2n+4)\pi$ -electrons. a) ii and iii b) i and iii c) i, ii and iy d) ii, iii and iv	K2	CO2		
3	5	Choose the correct statements from the following regarding Stork-Enamine reaction. 1) Enamines are treated with alkyl halide followed by hydrolysis to give ketones, 2) The enamine reaction results in alkylation of ketone at α-position, 3) Alkylation takes place on the less substituted side of the original ketone and 4) the reaction cannot be stopped with mono alkylation. a) 1, 2, 4 b) 1, 3, 4 c) 1, 2, 3 d) 1, 2, 3, 4	K1	CO3		
	6	The electrophile in the Sulphonation reaction is a) SO ₃ b) SO ₃ ⁺ c) HSO ₄ ⁻ d) SO ₃ H ⁺	K2	соз		
4	7	Name the rearrangement involving in the reaction of H+ a) Favorskii rearrangement c) Benzidine rearrangement d) Schmitt's rearrangement	K1	CO4		

Cont...

22CHP101N/ 22CHP101

Cont....

	8	On Beckmann rearrangement Ph gives	K2	CO4
		a) Ph-CH ₂ -CH ₂ -NH ₂ OH b) Ph-NH-CH ₂ -CH ₃ c) Ph-CH ₂ -CH ₂ -NH ₂ d) Ph-NH-CO-CH ₃		
5	9	Which the following compounds can show geometrical isomerism? 1) 2-pentene 2) 1,3-dibromocyclobutane 3) 1,1,2-trichloropropene 4) 2-methyl-3-heptene a) 1,4 b) 2,3 c) 1,2,4 d) 1,2,3	K1	CO5
	10	What is the configuration of the following structure? HO NHCH ₃ HO	K2	CO5
		a) 2R b) 1R c) 2S d) 1S		

SECTION - B (35 Marks) Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	СО
1	11.a.	i) Construct the Hammond postulates. (5) ii) State the principle of microscopic reversibility. (2)		CO1
		(OR)	K3	
	11.b.	Categorize the kinetic isotopic effects with examples.		
	12.a.	Utilize the effects of aromaticity on bond length, resonance energies and induced ring current.	К3	CO2
2		(OR)		
2	12.b.	i) Make use of Frost-Musulin diagram to evaluate the aromatic character. (5) ii) State the Craig's rule. (2)		
	13.a.	Analyze the mechanism of Sulphonation and nitration reactions in a step-by-step manner	K4	CO3
3		(OR)		
	13.b.	Compare the SE1, SE2, and SEi reactions with examples.		
4	14.a.	Discover the mechanism behind the Wolf rearrangement through examples.		
	(OR)		K4	CO4
	14.b.	Examine the mechanism behind the Stevens rearrangement by utilizing examples.	Cont.	

22CHP101N/ 22CHP101 Cont....

5	15.a.	Compare the stereochemistry of sulphur and nitrogen compounds.	K5	CO5
		(OR)		
	15.b.	Explain the interconversion of Fisher, Newman and Sawhorse projection formula.		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry **EQUAL** Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	СО
1	16	Explain the following, a) Inductive and field effects, b) Resonance effect, c) Hyper conjugation, d) Hydrogen bonding	K5	COI
2	17	Apply the Huckel's rule for following compounds, a) Sydnones, b) Ferrocene, c) [14]-Annulene, d) [18]-Annulene, e) Tropyllium ion	K4	CO2
3	18	Analyze the carbenes' structure, generation, and reactions.	K4	CO3
4	19	Inspect the compound's product and write down the mechanism, NOH R O.5 eq. l ₂ MeCN reflux, 0.5 - 6 h (5) Ph N ₃ toluene, ~65°C, 1 - 4 h	K4	CO4
5	20	Interpret with examples the following, a) Erythro and threo nomenclature (4) b) R-S system of nomenclature (6)	K5	CO5

Z-Z-Z

END