PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2023

(Fifth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS **REAL ANALYSIS**

Time: Three Hours

Maximum: 50 Marks

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(5 \times 1 = 5)$

- 1 Every infinite subset of a countable set A is (ii) not countable (i) Countable
 - (iii) Union

- (iv) Intersection
- When a sequence $\{S_n\}$ of real number is said to be monotonically increasing?
 - (i) $S_n = S_{n+1}, (n = 1,2,3...)$ (ii) $S_n \le S_{n+1}, (n = 1,2,3...)$
- - (iii) $S_n \ge S_{n+1}$, (n = 1,2,3...) (iv) $S_n < S$, (n = 1,2,3...)
- If f is continuous at every point of E, then f is said to be on E.
 - (i) bounded

- (ii) unbounded
- (iii) connected
- (iv) continuous
- Let f be defined on [a, b] and if f has a local maximum at a point $x \in (a, b)$ and if f'(x) exists, then
 - (i) $f'(x) \le 0$

- (ii) $f'(x) \ge 0$
- (iii) f'(x) = 0
- (iv) $f'(x) \neq 0$
- 5 If P^* is a refinement of P, then which one of the following is not true?
 - (i) $P \subset P^*$

- (ii) $L(P^*, f, \alpha) \le L(P, f, \alpha)$
- (iii) $L(P, f, \alpha) \le L(P^*, f, \alpha)$
- (iv) $L(P^*, f, \alpha) \leq U(P, f, \alpha)$

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

Let $\{E_n\}$, n=1,2,3... be a sequence of countable sets and put $S=\bigcup_{n=1}^{\infty}E_n$. Then prove that S is countable.

- If E is an infinite subset of a compact set K, then show that E has a limit point in K.
- Prove that a subset E of real line R^1 is connected if and only if it has the following property: a) If $x \in E$, $y \in E$ and x < z < y, then $z \in E$.

- If $\{P_n\}$ is a sequence in a compact metric space X, then prove that some subsequence of $\{P_n\}$ converges to a point of X.
- Prove that a mapping f of a metric space X into a metric space Y is continuous on X if and 8 a) only if $f^{-1}(V)$ is open in X for every open set V in Y.

- Let f is a continuous mapping of a compact metric space X into a metric space Y. Then prove that f(X) is compact.
- Let f is continuous on [a, b], f'(x) exists at some point $x \in [a, b]$, g is defined on an interval a) I which contains the range of f and g is differential at the point f(x). If h(t) = g(f(t)) $a \le 1$ $t \le b$, then h is differentiable at x and h'(x) = g'(f(x))f'(x). Justify the above statement.

Let $f:[a,b] \to \mathbb{R}^k$ be a continuous and let f be differentiable in (a,b). Then prove that there exists $x \in (a, b)$ such that $|f(b) - f(a)| \le (b - a)|f'(x)|$.

- 10 a) If f is continuous on [a, b], then show that $f \in \mathcal{R}(\alpha)$ on [a, b].

 OR
 - b) State and Prove fundamental theorem of Calculus.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a) Prove that (i) Compact subsets of metric spaces are closed. (ii) Closed subsets of compact sets are compact.

OF

- b) If X is a metric space and $E \subset X$, then show that
 - (i) \bar{E} is closed
 - (ii) $E = \overline{E}$ if and only if E is closed.
 - (iii) $\overline{E} \subset F$ for every closed set $F \subset X$ such that $E \subset F$.
- 12 a) Prove that every k-cell is compact.

OR

- b) If $\{s_n\}$, $\{t_n\}$ are complex sequences, and $\lim_{n\to\infty} s_n = s$, $\lim_{n\to\infty} t_n = t$, then show that
 - (i) $\lim_{n\to\infty} (s_n + t_n) = s + t ;$
 - (ii) $\lim_{n\to\infty} (cs_n) = cs$, $\lim_{n\to\infty} (c+s_n) = c+s$ for any number c;
 - (iii) $\lim_{n\to\infty} (s_n t_n) = st$.
- 13 a) Let f be a continuous mapping of a compact metric space X into a metric space Y. Then prove that f is uniformly continuous on X.

OR

- b) Let f be a continuous real function on the interval [a, b]. If f(a) < f(b) and if c is a number such that f(a) < c < f(b), then prove that there exists a point $x \in (a, b)$ such that f(x) = c.
- 14 a) State and Prove generalized Mean-value theorem.

OR

- b) State and Prove Taylor's theorem.
- 15 a) Show that $f \in \mathcal{R}(\alpha)$ on [a, b] if and only if for every $\varepsilon > 0$ there exists a partition P such that $U(P, f, \alpha) L(P, f, \alpha) < \varepsilon$.

OR

b) Assume α increases monotonically and $\alpha' \in \mathcal{R}$ on [a,b]. Let f be a bounded real valued function on [a,b]. Then prove that $f \in \mathcal{R}(\alpha)$ if and only if $f\alpha' \in \mathcal{R}$ where $\int_a^b f(\alpha) = \int_a^b f(\alpha) \alpha'(\alpha) d\alpha$.

Z-Z-Z s END