Cont...

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2023

(Third Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

	PARTIAL DIFFERENTIAL EQ	UATIONS AND FOURIER SERIES
Time:	Three Hours	Maximum: 50 Marks
	Answer A	N-A (5 Marks) LL questions carry EQUAL marks (5 x 1 = 5)
1	An equation is said to be linear if (i) independent variable (iii) derivatives	
2	The complete integral of $p^2 + q^2 = 1$	
	(i) $z = ax + \sqrt{a^2 - 1} y + c$ (iii) $z = ax + \sqrt{1 - a^2} y + c$	(ii) $z = ax + \sqrt{1 + a^2} y + c$ (iv) $z = ax - \sqrt{1 - a^2} y + c$
3	If all the derivatives in a partial discalled asequation (i) linear (iii) linear homogenous	(ii) non linear (iv) linear non homogeneous
4	The positive number P is called p (i) $f(x+p) = f(x)$ (iii) $f(x-p) = f(p)$	period of $f(x)$, if (ii) $f(x+p) = f(p)$ (iv) $f(p-x) = f(p)$
5	The eigen values of the vibrating (i) $\lambda_n = cn\pi L$ (iii) $\lambda_n = cn/\pi L$	g string is $(ii) \lambda_n = -cn\pi L$ $(iv) \lambda_n = cn\pi/L$
	Answer	N - B (15 Marks) ALL Questions as Carry EQUAL Marks (5 x 3 = 15)
	z = a(x+y) + b(x-y) + abt + c	equation by eliminating a,b and c from
b	Solve $y^2p - xyq = x(z - 2y)$	
	Solve $p + q = pq$ OR Evaluate the complete integral of	$9(p^2z+q^2)=4$
	Solve $25r - 40s + 16t = 0$	

b) Solve $(D^2 - 2DD' + D'^2)z = 12xy$

9. a) Evaluate the power series of the function
$$f(x) = \begin{cases} -k & \text{if } -2 < x < 0 \\ k & \text{if } 0 < x < 2 \end{cases} p = 2L = 4$$
OR

b) Evaluate the Fourier series of the function

$$f(x) = x + \pi \quad \text{if } -\pi < x < \pi \text{ and } f(x + 2\pi) = f(x)$$

10. a) Calculate the ttemperature u(x,t) in a laterally insulated copper bar 80 cm long if the initial temperature is $100 \sin(3\pi x/80)^{\circ}C$ and the ends are kept at $0^{\circ}C$. How long it will take for the maximum temperature in the bar to drop to $50^{\circ}C$? (where density = $8.92b/cm^3$, specific heat = $0.092 \text{cal/} g^{\circ} C$, thermal conductivity = $0.95 \text{ cmsec}^{\circ} C$).

b) Calculate the temperature of a bar of length L whose ends are insulated and the initial temperature is

$$f(x) = \begin{cases} x & \text{if } 0 < x < \frac{L}{2}, \\ L - x & \text{if } L/2 < x < L \end{cases}$$

SECTION -C (30 Marks)

Answer ALL questions ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11. a) Construct a partial differential equation by eliminating the arbitrary function φ from $\varphi(x + y + z, x^2 + y^2 + z^2 = 0).$

b) Solve $z(p-q) = z^2 + (x+y)^2$

- 12. a) Evaluate the complete integral of $(x^2 + y^2)(p^2 + q^2) = 1$

b) Evaluate the complete integral of $q^2y^2 = z(z - px)$

13. a) Solve $(D^3 - 4D^2D' + 4DD'^2)z = 4\sin(2x + y)$

- OR b) Solve $(D^2 6DD' + 9D'^2)z = 12x^2 + 36xy$
- 14. a) Let f(x) be periodic with period 2π and piecewise continuous in the interval $-\pi \le x \le \pi$. Furthermore f(x) have a left hand derivative and a right hand derivative at each point, then prove that the Fourier series $f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ converges.

OR

b) A sinusoidal voltage $E sin \omega t$, where t is time, is passed through a half-wave rectifier that clips the negative portion of the wave. Evaluate the Fourier series of the resulting periodic function.

 $u(t) = \begin{cases} 0 & \text{if } -L < t < 0, \\ Esin\omega t & \text{if } 0 < t < L \end{cases} p = 2L = \frac{2\pi}{\omega}$

15 a) Derive the one dimensional wave equation.

b) Determine the solution of $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$, u(x,t) = 0 when u(0,t) = 0, u(L,t) = 0 for all $t \ge 0$ which is replaced by the condition that both ends of the bar are insulated.