PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2023

(First Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

CALCULUS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 1 = 10)$							
Module No.	Question No.	Question	K Level	СО			
1	1	$\vec{a} \times \vec{b}$ is orthogonal to a) \vec{a} b) \vec{b} c) both \vec{a} and \vec{b} d) neither \vec{a} nor \vec{b}	K1	CO1			
	2	If $\vec{r}(t) = \langle t^3, ln(3-t), \sqrt{t} \rangle$ then the domain of \vec{r} is a) $(0,3)$	K2	CO1			
2	3	If $f(x,y) = 4 - x^2 - 2y^2$, then $f_x(1,1) = $ a) -4 b) -1 c) -2 d)-3 The equation $\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ is called equation	K2	CO2			
2	4	a) Laplace b) Wave c) Euler d) Heat	K1	CO2			
3	5	If $f(x,y) = \frac{\sqrt{x+y+1}}{x-1}$ then $f(3,2) = $ a) $\frac{\sqrt{6}}{2}$ b) $\frac{\sqrt{3}}{2}$ c) 0 d) 1	K2	CO3			
	6	If f(a,b) is neither a maximum nor minimum then (a,b) is a point. a) maximum b) minimum c) saddle d) extreme	K1	CO3			
4	7	If $f(x,y) \ge g(x,y)$ for all x in R then which of the following property holds: a) $\iint_R f(x,y) dA \ge \iint_R g(x,y) dxdy$ b) $\iint_R f(x,y) dA \le \iint_R g(x,y) dxdy$ c) $\iint_R f(x,y) dA = \iint_R g(x,y) dxdy$ d) $\iint_R f(x,y) dA = -\iint_R g(x,y) dxdy$	K1	CO4			
	8	If $R = [0, \pi/2] X [0, \pi/2]$ then $\iint_R \sin x \cos y dA = $ a) 0 b)1 c) -1 d) 2	K2	CO4			
5	9	c) -1 d) 2 If $B = \{(x, y) 0 \le x \le 1, -1 \le y \le 2, 0 \le z \le 3\}$ then $\iiint_B xyz^2 dV =$ a) $\frac{27}{2}$ b) $-\frac{27}{2}$ c) $-\frac{27}{4}$ d) $\frac{27}{4}$	K2	CO5			
	10	The rectangular coordinates of the point with spherical coordinates $\left(2, \frac{\pi}{4}, \frac{\pi}{3}\right)$ is a) $\left(\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}}, 1\right)$ b) $\left(-\sqrt{\frac{3}{2}}, -\sqrt{\frac{3}{2}}, -1\right)$ c) $\left(\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}}, -1\right)$ d) $\left(-\sqrt{\frac{3}{2}}, -\sqrt{\frac{3}{2}}, 1\right)$	K1	CO5			

Cont...

Answer ALL questions

Answer ALL questions ALL questions carry EQUAL Marks $(5 \times 7 = 35)$							
Module	Question	ALL questions carry EQUAL Marks (5 × 7 = 35) Question	K Level	СО			
No. 1	No.	Find the parametric equations and symmetric equations of the lines that passes through $A(2,4,-3)$ and $B(3,-1,1)$. At what points does this line intersect the xy -plane?	K2	CO1			
	11.b.	(OR) Find the curvature of the twisted cube $\vec{r}(t) = \langle t, t^2, t^3 \rangle$ at a general point and at $(0,0,0)$					
2	12.a.	Examine whether $\lim_{(x,y)\to(0,0)} f(x,y)$ exists or not if $f(x,y) = \frac{xy}{x^2+y^2}$.	K3	CO2			
	12.b.	(OR) Determine all the second derivatives of $f(x,y) = x^3 + x^2y^3 - 2y^2$ and examine whether $f_{xy} = f_{yx}$ or not.					
3	13.a.	a) If $f(x,y) = xe^y$, then find the rate of change of f at the point $P(2,0)$ in the direction from P to $Q(\frac{1}{2}, 2)$. b) Illustrate the direction in which f have the maximum rate of change? What is the maximum rate of change?	К3	CO3			
	13.b.	(OR) Make use of the concept of Lagrange multipliers to find the points on the sphere $x^2 + y^2 + z^2 = 4$ that are closest and farthest from the point $(3,1,-1)$.					
4	14.a.	Evaluate $\iint_D (x + 2y) dA$ where D is the region bounded by the parabolas $y = 2x^2$ and $y = 1 + x^2$.		CO4			
	14.b.	Evaluate $\iint_R (3x + 4y^2) dA$, where R is the region in the upper half plane bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.					
5	15.a.	Using triple integral, estimate to find the volume of the tetrahedron bounded by the planes $x + 2y + z = 2$, $x = 2y$, $x = 0$, $z = 0$.	K4	CO5			
	15.b.	(OR) Evaluate $\iiint_B e^{(x^2+y^2+z^2)^{3/2}} dV$ where B is the unit ball $B = \{(x, y, z) x^2 + y^2 + z^2 \le 1\}.$					

SECTION -C (30 Marks) Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$						
Module	Question No.	Question	K Level	СО		
No.	16	Identify the unit normal and the binormal vectors for the circular helix $\vec{r}(t) = \cos t \vec{i} + \sin t \vec{j} + t \vec{k}$.	K4	CO1		
2	17	Show that $f(x,y) = xe^{xy}$ is differentiable at (1,0). Also identify its linearization and hence approximate	K4	CO2		
3	18	f(1.1,-0.1). Estimate the local maximum, minimum and saddle points of $f(x,y) = x^4 + y^4 - 4xy + 1$.	K4	CO3		
4	19	The density at any point on a semi-circular lamina is proportional to the distance from the centre of the circle. Examine the centre of mass of the lamina.	K4	CO4		
5	20	Analyze the formula for triple integration in spherical coordinates.	K4	CO5		