PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2023

(Fifth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

ADVANCED DIFFERENTIAL EQUATIONS

Maximum: 50 Marks Time: Three Hours

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(5 \times 1 = 5)$

- Find the eigen values of the matrix $A = \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}$. 1
 - (i) 3,-3

(iii) -3, -5

- (iv) 3,5
- The radius of convergence of the series $\sum_{n=1}^{\infty} n^n z^n$ is -----2

(ii) ∞

(iii) 1

- (iv) e
- $\Gamma(1/2) = ------$ 3

(ii) $\pi/2$

(iii) $\sqrt{\pi}$

- (iv) $\sqrt{\pi/2}$
- A critical point is called ----if some neighbourhood of it contains no 4 other critical path.
 - (i) origin

(ii) proper node

(iii) isolated

- (iv) improper node
- Quasi-linear equation is also called a -----equation. 5
 - (i) uniform nonlinear

(ii) Charpit's

(iii) Monge

(iv) non-uniform nonlinear

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

Find a general solution of the system $x' = \begin{bmatrix} 1 & -3 \\ 3 & 7 \end{bmatrix} x$. 6

- Let $A = \begin{bmatrix} 2 & -3 \\ 4 & 7 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & -4 \\ 5 & 1 \end{bmatrix}$. Find AB and BA.
- a Solve the equation $x^2y' = y x 1$. 7
 - Investigate the nature of the point x = 0 for the differential equation b $x^4y'' + (x^2\sin x)y' + (1-\cos x) = 0.$
- Solve the equation $4x^2y'' + 8xy' + (x^4 3)y = 0$.
 - Evaluate $\int x^2 J_0(x) dx$. b
- Determine the type and stability of the critical point (0,0) of the almost linear system $\frac{dx}{dt} = 4x + 2y + 2x^2 3y^2$, $\frac{dy}{dt} = 4x 3y + 7xy$. 9 a
 - Explain critical points of Linear system. b

- 10 a Find a complete integral of the equation (p+q)(z-xp-yq)=1.
 - b Solve the equation $q^2r 2pqs + p^2t = 0$.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

- 11 a Solve the initial value problem $\frac{dx}{dt} = \begin{bmatrix} 3 & -2 & 0 \\ -1 & 3 & -2 \\ 0 & -1 & 3 \end{bmatrix} x(0) = \begin{bmatrix} 0 \\ 2 \\ 6 \end{bmatrix}$.
 - b Find a general solution of the system $x_1' = 4x_1 + 2x_2, x_2' = 3x_1 x_2$.
- 12 a Solve the equation y' + 2y = 0.
 - b Find the Frobenius series of $2x^2y'' + 3xy' (x^2 + 1)y = 0$.
- 13 a Determine whether or not the equation $x^2y'' xy' + (x^2 8)y = 0$ has two linearly independent Frobenius series solutions.

OR

- b Explain Bessel function identities with an example.
- 14 a Find all critical points of the given system, and investigate the type and stability of each. $\frac{dx}{dt} = x y$; $\frac{dy}{dt} = x^2 y$.
 - b Find the critical points of the system

$$\frac{dx}{dt} = 14x - 2x^2 - xy; \frac{dy}{dt} = 16y - 2y^2 - xy.$$

- 15 a Solve the equation $r + 4s + t + rt s^2 = 2$.
 - b Find a complete integral of the equation: $p^2x + q^2y = z$.

Z-Z-Z

END