PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2022

(Second Semester)

Branch - MATHEMATICS

TOPOLOGY

Time: Three Hours		Maximum: 50 Marks	
	Answer AL	A (5 Marks) L questions EQUAL marks	$(5 \times 1 = 5)$
(i) Order topol	the collection of all one logy	-point subsets of X is a basis for (ii) Metric topology (iv) Standard topology	
closed set B o (i) Open (iii) Continuo	If Y, the set $f^{(B)}$ is	(iv) CLO open	
the order topo (i) Compact	(ii) Open	ed set having the least upper bou	(iv) Closed
containing A a) Regular	(ii) Normal	sets of a space X, there exist di (iii) Hausdorff	sjoit open sets (iv) Lindelof
(i) Urysohn l	temma extension Theorem	basis is metrizable is given by_ (ii) Ursohn metrization the (iv) Tychonoff Theorem	eorem
	Answer A	- B (15 Marks) ALL Questions arry EQUAL Marks	$(5 \times 3 = 15)$
6. (a) Let X be the colle	a set and \mathcal{B} be a basis feation of all union of elements	or a topology $ au$ on X. Prove that ments of $\mathcal B$.	τ equals
		(OR)	
		n a Hausdorff space is closed. how that for every subset A of (OR)	$X, f(\overline{A}) \subset \overline{f(A)}.$
(b)State and	l prove Pasting lemma.		<u>-</u>
(a) If the se	ts C and D form a separanat Y lies entirely within	ation of X, and if Y is a connect either C or D. (OR)	ed subspace of X
(b)Show th	at every closed subspace	e of a compact space is compact	: •
· · · · · · · · · · · · · · · · · · ·	ne two countability axion	No. of the control of	

- (b) Let X be a topological space and let one-point sets in X be closed. If X is regular then show that given a point x of X and a neighbourhood U of x, there is a neighbourhood V of x such that $\overline{V} \subset U$.
- 10. (a) Show that a subspace of a completely regular space is completely regular.

(OR)

(b) Prove that every metrizable space is normal.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 (a) (i) Define a topological space.

(ii) Let A be a subset of the topological space X; let A be the set of all limit points of A. Then prove that $\overline{A} = A \cup A'$

(OR)

- (b) Let Y be a subspace of X. Then prove that a set A is closed in Y if and only if it equals the intersection of a closed set of X with Y.
- 12 (a) Let $f: A \to X \times Y$ be given by the equation

 $f(a) = (f_1(a), f_2(a)).$

Then prove that f is continuous if and only if the functions

 $f_1: A \to X$ and $f_2: A \to Y$

are continuous.

- (b) State and prove sequence comma.
- (a) Prove that the cartesian product of two connected spaces is connected. 13

(OR)

- (b) Prove that a subspace A of R^n is compact if and only if it is closed and is bounded in the euclidean metric d or the squae metric ρ .
- 14 (a) Suppose that X has a countable basis. Then prove that the following:
 - Every open covering of X contains a countable subcollection covering X.
 - There exists a countable subset of X that is dense in X. (ii)

(OR)

- b) Prove that a subspace of a regular space is regular; a product of regular spaces is regular.
- 15 (a) Prove that every compact Hausdoff space is normal.

(OR)

- (b) Let X be a set; let D be a collection of subsets of X that is maximal with espect to the finite intersection property. Then prove the following:
 - (i) Any finite intersection of elements of D is an element of D.
 - (ii) If A is a subset of X that intesects every element of D, then A is an element of D.

Z-Z-Z END