Maximum: 50 Marks

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2022

(Second Semester)

Branch - MATHEMATICS

Time: Three Hours

MEASURE THEORY AND INTEGRATION

· / · · ·	SECTION-A (5 Marks) Answer ALL questions
	ALL questions carry EQUAL marks $(5 \times 1 = 5)$
	measurable. (i) Union of a countable collection of measurable (ii) complements of a measurable (iii) Union of a countable collection of measurable (iv) all
2	Let f be non negative measurable function on E then $\int_{E} f = 0$ iff
	(i) $f \le 0$ a.e on E (ii) $f = 0$ a.e on E (iii) $f \ge 0$ a.e on E
3	The Lebesgue set of a function f \(\varepsilon L(a,b) \) contains any point at which f is (i) Discontinuous (ii) not compact (iii) continuous (iv) not continuous
4	A is a positive set with respect to V and if for $E \in S$, $\mu(E) = \underline{\hspace{1cm}}$ then μ is a measure (i) $\nu(E)$ (ii) $\nu(A)$ (iv) $\nu(A \cup E)$
5	Every outer measure induced by a measure on algebra is (i) Regular (ii) regular outer measure (iii) σ-algebra (iv) complete measure
6	SECTION - B (15 Marks) Answer ALL Questions ALL Questions Carry EQUAL Marks (5 x 3 = 15) a Prove that every integral is measurable. OR b Prove that the class M is a σ-algebra.
7	a State and prove Lebesgue monotonic convergence theorem.
	OR b Analyze the statement of Lebesgue's Dominated convergence theorem.
8	a If f is absolutely continuous on $[a,b]$ then prove that it is of bounded variation on $[a,b]$.
В	OR b Prove that let [a,b] be a finite interval and let $f \in L(a,b)$ with indefinite integral F then $F' = f$ a.e in [a,b]. Cont

Cont...

Analyze the statement, Let v be a signed measure on the measurable space (X, B) then there is a positive set A and a negative set B such that X = AUB and $A \cap B = \phi$. The pair A,B is said to be a Hahn decomposition of X with respect to v. It is unique to the extent that A_1, B_1 and A_2, B_2 are Hahn decomposition of X with respect to v then $A_1 \Delta A_2$ is a v-null set.

OR.

- Analyze the statement, let v be a signed measure on [[X,S]]. Then there exists measures v+and V- on [[X,S]] such that $v = v^+ v^-$ And $v^+ \perp v^-$. The measures v^+ and v^- are uniquely defined by v and $v = v^+ v^-$ is said to be Jordan decomposition of v.
- 10 a Let f be a non-negative $S \times T$ -measurable function and let $\phi(x) = \int_{Y} f_X dv$, $\psi(y) = \int_{X} f^y d\mu$ for each $x \in X$, $y \in Y$ then prove that ϕ is S-measurable, ψ is T-measurable and $\int_{X} \phi d\mu = \int_{X \times Y} f d(\mu \times \nu) = \int_{Y} \psi d\nu$

OR

b Let x be a point of X and E a set in $R_{\sigma\delta}$ then prove that E_x is a measurable subset of Y.

SECTION -C (30 Marks)

Answer ALL questions ALL questions carry EQUAL Marks $(5 \times 6 = 30)$

11 a Prove that not every measurable set is a Borel set, each open set and each closed set is measurable.

OR

- b Prove that the outer measure of an interval equals its length.
- 12 a State and prove Fatou's lemma.

OR

- b Let f and g be integrable functions then prove the following.
 - (i) af is integrable and $\int af \ dx = a \int f \ dx$
 - (ii) f + g is integrable and $\int (f + g)dx = \int fdx + \int gdx$
 - (iii) If f = 0 a.e then $\int f dx = 0$
 - (iv) If $f \le g$ a.e then $\int f dx \le \int g dx$

If A and B are disjoint measurable sets then $\int_A f \cdot dx + \int_B f \cdot dx = \int_{A \cup B} f \cdot dx$

13 a Prove that let [a,b] be a finite interval and let $f \in L(a,b)$ with indefinite integral F then F'=f a.e in [a,b].

OR

- b State and prove Vitali's theorem.
- 14 a Analyze the statement of Radon-Nikodym theorem.

OR

- b Analyze the statement of Hahn decomposition theorem.
- 15 a State and prove Fubini's theorem.

OR

Z-Z-Z

b State and prove extension theorem.

END