Cont... # PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) ## **MSc DEGREE EXAMINATION MAY 2022** (Fourth Semester) ## Branch - MATHEMATICS ## **MATHEMATICAL METHODS** | Ti | ne: Three Hours | | Maximum: 75 Marks | |----|--|--|--------------------------------------| | | SECTIO | N-A (10 Marks) | | | | | r ALL questions | | | | ALL questions of | carry EQUAL marks | $(10 \times 1 = 10)$ | | | | | | | 1. | An integral equation is an equation in which an unknown function appears under integral sign. | | | | | (i) one
(iii) more | (ii) two
(iv) one or more | | | 2. | In the fredholm integral equation of t
(i) 0
(iii) infinite | the first kind h(s) = _
(ii) finite
(iv) < 0 | | | 3. | $\Gamma(s,t;\lambda) = \sum_{m=1}^{\infty} \lambda^{m-1} k_m(s,t)$ is1/B. | for a | all values of s, t in $ \lambda $ < | | | (i) uniformly convergent(iii) absolutely convergent | (ii) divergent
(iv) both (i) and (i | ii) | | 4. | ODE of first order can be solved by (i) Picard (iii) Taylor | method (ii) Jacobian (iv) Volterra | d. | | 5. | The boundary value problem in ODE (i) Volterra-type integral equations (iii) both (i) & (ii) | E lead to | | | 6. | An integral equation is called singula
(i) Indefinite
(iii) infinite | ar if the range of inte
(ii) finite
(iv) Indeterminant | | | | Functionals are quant
(i) constant
(iii) maximal | (ii) variable(iv) minimal | | | 8. | A necessary condition for the extrem
(i) < 0
(iii) = 0 | num of $\varphi(\alpha)$ for $\alpha = 0$
(ii) > 0
(iv) ∞ | is $\varphi'(0) = $ | | 9. | If on a plane one and only one curve
of a certain region, then the family o
(i) pencil
(iii) region | of a family of curve
f curves is said to for
(ii) closed curve
(iv) field | s passes through every point
rm a | | 10 | The condition of possibility of const extremal is called condition (i) Euler (iii) Hamilton | ructing a field of ext
1.
(ii) Jacobi
(iv) Abel's | remals including a given | #### SECTION - B (35 Marks) #### Answer ALL Questions ALL Questions Carry EQUAL Marks $(5 \times 7 = 35)$ 11 a State and prove Fredholm theorem. OR - b Solve $g(s) = s + \lambda \int_0^1 (st^2 + s^2t)g(t)dt$. - 12 a Solve $g(s) = s + \lambda \int_0^1 e^{s-t} g(t) dt$. - b Solve $g(s) = s + \lambda \int_0^1 (st + (st)^{1/2}) g(t) dt$. - 13 a Reduce the BVP $y''(s) + \lambda P(s)y = Q(s)$ with y(a) = 0, y(b) = 0 to a Fredholm integral equation. OR - b Solve $f(s) = \int_a^s \frac{g(t)}{(\cos t \cos s)^{1/2}}, 0 \le a < s < b \le \pi$. - 14 a State and prove fundamental lemma of calculus of variation. OR - b On what curves can $V[y(x)] = \int_0^1 [(y')^2 + 12xy] dx$, y(0) = 0, y(1) = 1, be extremized? - 15 a Is the Jacobi condition fulfilled for the extremal of $V = \int_0^a (y'^2 y^2) dx$ that passes through A(0,0) and B(a,0)? OR b Test for an extremum of $V[y(x)] = \int_0^a (y')^3 dx$, y(0) = 0, y(a) = b, a > 0, b > 0. #### SECTION - C (30 Marks) Answer any THREE Questions ALL Questions Carry EQUAL Marks (3 x 10 = 30) - Find the eigenvalues and eigen functions of $g(s) = \lambda \int_1^2 \left[st + \frac{1}{st} \right] g(t) dt$. - 17 Solve: $g(s) = 1 + \lambda \int_0^{\pi} [\sin(s+t)] g(t) dt$. - Reduce $y''(s) + A(s)y' + B(s)y = F(s), y(a) = y_0, y(b) = y_1$ to Fredholm integral equation. - 19 State minimum surface of revolution problem and solve it. - Find the equation of geodesics on a surface on which the element of length of the curve is of the form $ds^2 = [\varphi_1(x) + \varphi_2(y)](dx^2 + dy^2)$. $$Z-Z-Z$$