Cont...

PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2022

(Fourth Semester)

Branch - MATHEMATICS

MATHEMATICAL METHODS

Ti	ne: Three Hours		Maximum: 75 Marks
	SECTIO	N-A (10 Marks)	
		r ALL questions	
	ALL questions of	carry EQUAL marks	$(10 \times 1 = 10)$
1.	An integral equation is an equation in which an unknown function appears under integral sign.		
	(i) one (iii) more	(ii) two (iv) one or more	
2.	In the fredholm integral equation of t (i) 0 (iii) infinite	the first kind h(s) = _ (ii) finite (iv) < 0	
3.	$\Gamma(s,t;\lambda) = \sum_{m=1}^{\infty} \lambda^{m-1} k_m(s,t)$ is1/B.	for a	all values of s, t in $ \lambda $ <
	(i) uniformly convergent(iii) absolutely convergent	(ii) divergent (iv) both (i) and (i	ii)
4.	ODE of first order can be solved by (i) Picard (iii) Taylor	method (ii) Jacobian (iv) Volterra	d.
5.	The boundary value problem in ODE (i) Volterra-type integral equations (iii) both (i) & (ii)	E lead to	
6.	An integral equation is called singula (i) Indefinite (iii) infinite	ar if the range of inte (ii) finite (iv) Indeterminant	
	Functionals are quant (i) constant (iii) maximal	(ii) variable(iv) minimal	
8.	A necessary condition for the extrem (i) < 0 (iii) = 0	num of $\varphi(\alpha)$ for $\alpha = 0$ (ii) > 0 (iv) ∞	is $\varphi'(0) = $
9.	If on a plane one and only one curve of a certain region, then the family o (i) pencil (iii) region	of a family of curve f curves is said to for (ii) closed curve (iv) field	s passes through every point rm a
10	The condition of possibility of const extremal is called condition (i) Euler (iii) Hamilton	ructing a field of ext 1. (ii) Jacobi (iv) Abel's	remals including a given

SECTION - B (35 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 7 = 35)$

11 a State and prove Fredholm theorem.

OR

- b Solve $g(s) = s + \lambda \int_0^1 (st^2 + s^2t)g(t)dt$.
- 12 a Solve $g(s) = s + \lambda \int_0^1 e^{s-t} g(t) dt$.
 - b Solve $g(s) = s + \lambda \int_0^1 (st + (st)^{1/2}) g(t) dt$.
- 13 a Reduce the BVP $y''(s) + \lambda P(s)y = Q(s)$ with y(a) = 0, y(b) = 0 to a Fredholm integral equation.

OR

- b Solve $f(s) = \int_a^s \frac{g(t)}{(\cos t \cos s)^{1/2}}, 0 \le a < s < b \le \pi$.
- 14 a State and prove fundamental lemma of calculus of variation.

OR

- b On what curves can $V[y(x)] = \int_0^1 [(y')^2 + 12xy] dx$, y(0) = 0, y(1) = 1, be extremized?
- 15 a Is the Jacobi condition fulfilled for the extremal of $V = \int_0^a (y'^2 y^2) dx$ that passes through A(0,0) and B(a,0)?

OR

b Test for an extremum of $V[y(x)] = \int_0^a (y')^3 dx$, y(0) = 0, y(a) = b, a > 0, b > 0.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry EQUAL Marks (3 x 10 = 30)

- Find the eigenvalues and eigen functions of $g(s) = \lambda \int_1^2 \left[st + \frac{1}{st} \right] g(t) dt$.
- 17 Solve: $g(s) = 1 + \lambda \int_0^{\pi} [\sin(s+t)] g(t) dt$.
- Reduce $y''(s) + A(s)y' + B(s)y = F(s), y(a) = y_0, y(b) = y_1$ to Fredholm integral equation.
- 19 State minimum surface of revolution problem and solve it.
- Find the equation of geodesics on a surface on which the element of length of the curve is of the form $ds^2 = [\varphi_1(x) + \varphi_2(y)](dx^2 + dy^2)$.

$$Z-Z-Z$$