PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2023

(Third Semester)

Branch - COMPUTER SCIENCE WITH DATA ANALYTICS

LINEAR ALGEBRA

Time: Three Hours Maximum: 50 Marks

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(5 \times 1 = 5)$

- 1. A unit vector u is a vector whose length equals -----.

 (i) 1 (ii) 0 (iii)-1 (iv) 2
- The system Ax = b is ----- if and only if b is in the column space of A.
 - (i) bounded

(ii) solvable

(iii) unsolvable

- (iv) unbounded
- 3 Any n vectors that span \mathbb{R}^n must be -----
 - (i) dependent

(ii) independent

(iii) null space

- (iv) subspace
- 4 The determinant is zero when the matrix has -----.
 - (i) inverse

(ii) no inverse

(iii) singular

- (iv) non singular
- 5 The transformation is linear only if ----.

(i) $v_0 = 1$

(ii) $v_0 = 0$

(iii) $v_0 = -1$

(iv) $v_0 = c$

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

Find a unit vector u in the direction of v = (3,4). Find a unit vector U that is perpendicular to u. How many possibilities for U?

OR

- b Find $\cos \theta$ for $v = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $w = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.
- 7 a Describe the nullspace of the matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$.

OR

- b Write the properties of a matrix with full row rank.
- 8 a Find the projection matrix $P = \frac{aa^T}{a^Ta}$ onto the line through $a = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$.

OR

- b The equation x 3y 4z = 0 describes the plane P in R^3
 - (i) The plane P is the nullspace N(A) of what 1×3 matrix A?
- 9 a Compute the determinants of the matrix by row operations: $A = \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & b \\ c & 0 & 0 \end{pmatrix}$.

OR

- b Find the cross product of u = (3,2,0), v = (1,4,0) in the XY plane.
- 10 a T rotates every vector by the angle θ . Here $V + W = R^2$. Find A. OR

b The space of 2×2 matrices has the following four vectors as a basis:

$$v_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, v_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, v_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

T is the linear transformation that transpose every 2×2 matrix. What is the matrix that represents T in this basis? What is the inverse matrix A^{-1} ?

SECTION -C (30 Marks)

Answer ALL questions

 $(5 \times 6 = 30)$

11 a Describe the column picture of the following system of three equations Ax=b. Solve by careful inspection of the columns:

$$x + 3y + 2z = -3; 2x + 2y + 2z = -2; 3x + 5y + 6z = -5.$$

b Multiply the following matrices in the orders EF and FE:

$$E = \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & 0 & 1 \end{pmatrix}$$
, $F = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & c & 1 \end{pmatrix}$. Also compute $E^2 = EE$, $F^3 = FFF$ and produce F^{100} .

12 a Let $A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$ then find the reduced echelon form of A. What is the rank? What is the special solution to Ax=0?.

OR

b Find the rank of the matrix
$$A = \begin{pmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$
.

13 a If
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}$$
 and $b = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$ find \hat{x} and p and P .

- b Project the vector b = (2,3,4) onto the line through a = (2,2,1) and then onto the plane that also contains $a^* = (1,0,0)$. Check that the first error vector b p is perpendicular to a, and the second error vector $e^* = b p^*$ is also perpendicular to a^* . Find the 3×3 projection matrix P onto that plane of a and a^* . Find a vector whose projection onto the plane is the zero vector.
- 14 a Find the eigenvalues and eigenvectors of A and A^2 and A^{-1} and A + 4I: where $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$.

b Ax=b is $\begin{pmatrix} 2 & 6 & 2 \\ 1 & 4 & 2 \\ 5 & 9 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ Use Cramer's rule with ratios $\frac{\det B_j}{\det A}$ to solve Ax=b. Also find the inverse matrix $A^{-1} = C^{-1}/\det A$. Why is the solution x for this b the same as column 3 of A^{-1} ? Which cofactors are involved in computing that column x?

15 a S rotates by θ and T rotates by $-\theta$. Then prove TS = I matches AB = I.

b Find the eigenvalues and eigenvectors of the matrix $P = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$.