PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2023

(Second Semester)

Branch – COMPUTER SCIENCE WITH DATA ANALYTICS <u>DISCRETE STRUCTURES & GRAPH THEORY</u>

T	ime	e: Three Hours Maximum: 50 Marks
SECTION-A (5 Marks)		
Answer ALL questions ALL questions carry EOUAL marks $(5 \times 1 = 5)$		
ALL questions carry EQUAL marks $(5 \times 1 = 5)$		
1.		nich of the following set is a successor set of $\{\phi\}$. $\{\phi\}$ ii) $\{\phi, \{\phi\}\}$ iv) $\{\phi, \{\phi\}\}$
2.	cal	$\langle A, \leq \rangle$ is a partially ordered set and A is a chain, than $\langle A, \leq \rangle$ is led Ordered set ii) Totally Ordered set
		i) Chain iv) Anti-chain
3.	"A	premise may be introduced at any point in the derivation this rule is
		Rule P ii) Rule T
		i) Rule CP iv) None of these
4.	If i	graph G is Eulerian then all the vertices of G is of Odd degree ii) Even degree iii) Zero degree iv)One degree
5.		Graph in which there isbetween every pair of vertices in a tree. No path ii) One path iii) Two paths iv) Three paths
		SECTION - B (15 Marks)
		Answer ALL Questions (5 x 3 = 15)
		ALL Questions Carry EQUAL Marks $(5 \times 3 = 15)$
6.		Show that $2^n > n^3$ for $n \ge 10$, by principle of Mathematical Induction OR
	b	Determine the number of ways to seat five boys in a row of 12 chairs.
7.	a	Let $R = \{(1, 2), (3, 4), (2, 2)\}$, and $S = \{(4, 2), (2, 5), (3, 1), (1, 3)\}$ Find $RoS, SoR, Ro(SoR)$ (RoS) oR, RoR, SoS . OR
	b	Define (i) Partially ordered set (ii) Lattice.
8.	a	Show that the following equivalence: $P \to (Q \to P) (=) 7P \to (P \to Q)$.
	b	OR Write down the rules for inference theory.
9.	a	Discuss the Konigsberg bridge problem. OR
	b	Discuss (i) Eulerian Path (ii) Hamilton Path.
10.	a	Discuss the rooted trees.
	1-	OR
	0	Prove that every circuit has an even number of edges in common with every cut-se

SECTION -C (30 Marks)

Answer ALL questions
ALL questions carry EQUAL Marks $(5 \times 6 = 30)$

- 11. a Show that $n^3 + 2n$ is divisible by 3 for all $n \ge 1$, by Mathematical induction.
 - b Find the number of paths for a rook to more from the south-west corner of a chessboard to north east corner by moving eastward and northward only.
- 12. a List the properties of relation with example.

OR

- b Show that composition at functions is associative.
- 13. a Obtain the product of sums canonical form of $(P \land Q) \lor (7P \land R)$.

OR

- b Show that $S \vee R$ is tautologically implied by $(P \vee Q) \wedge (P \to R) \wedge (Q \to S)$.
- 14. a In a Graph with n vertices, there is a path from vertex V_1 to vertex V_2 , prove that the path no more than n-1 edges from vertex V_1 to vertex V_2 .

OR

- b Discuss the travelling sales person problem.
- 15. a Prove that the number of vertices one more than the number of edges in a true.

OR

b Prove that a connected graph contain a spanning tree.

Z-Z-Z

END