PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Fourth Semester)

Branch - STATISTICS

BASIC SAMPLING THEORY

Maximum: 50 Marks Time: Three Hours

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(5 \times 1 = 5)$

- Which of the following is a sampling error?
 - (i) Faulty selection of sample (ii) Response error
 - (iii) Prestige bias
- (iv) Interviewer bias
- When Simple random sampling is very effective if
 - (i) The population is not very large
 - (ii) The population is not heterogenous
 - (iii) The population is parttioned in to several sections
 - (iv) Both (i) and (ii)
- When strata is a ---
 - (i) Non homogenous subgroup of a population
- (ii) Sample of the population
 - (iii) Homogenous sub group of population
- (iv) None of the above
- 4 What is the formula for the sampling interval k?
 - (i) N/n

(ii) n/N

(iii) 1/N

- (iv) 1/n
- Ratio method of estimation is not applicable when regression line is passing 5
 - (i) Not through the origin
- (ii) through the origin
- (iii) through Y-axis
- (iv) through X-axis

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

Explain the terms (i) Sampling distribution and (ii) Standard error. Also explain a the uses of standard error.

- Explain the limitations of sampling. b
- Prove that the probability of selecting a specified unit of population at any given 7 a draw is equal to the probability of its being selected at the first draw in simple random sampling.

OR

- State the drawbacks of simple random sampling. b
- Show that $Var(\bar{y}_{st}) = \frac{1}{N^2} \sum_{i=1}^{k} N_i (N_i n_i) \frac{S_i^2}{n_i}$ 8 a
 - State the principal advantages of stratified random sampling. b
- Compare the sample variance of simple random sample and systematic 9 sampling.
 - Show that systematic sampling would be more efficient as compared with b srswor if $\rho < \frac{1}{nk-1}$
- Define ratio estimator and explain its properties. 10 a

Prove that $V(\widehat{Y}_R) = \frac{(1-f)}{n} \sum_{i=1}^n \frac{(y_i - Rx_i)^2}{N-1}$

SECTION -C (30 Marks)

Answer ALL questions
ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a Highlight the principal steps in a sampling survey.

OR

- b Examine non sampling errors with examples.
- 12 a In SRSWOR, prove that $Var(\bar{y}_n) = \left(\frac{1}{n} \frac{1}{N}\right)S^2$.

OR

- b Explain the different methods of selecting a simple random sample.
- 13 a. Show that greater the difference in the stratum, greater is the gain in precision of stratified random sampling with proportional allocation over simple random sampling.

$$\begin{array}{c} & \text{OR} \\ \text{b} & \text{Show that } var(\bar{y}_{st})_{Ney} = \frac{1}{n} (\sum_{i=1}^{k} p_{i} S_{i})^{2} - \frac{1}{N} \sum_{i=1}^{k} p_{i} S_{i}^{2} \end{array}$$

- 14 a If the population has a linear trend prove that $Var(\bar{y}_{st}) \leq Var(\bar{y}_{sys}) \leq Var(\overline{y_n})_R$
 - b Show that $Var(\bar{y}_{sys}) = \frac{N-1}{N}S^2 \frac{k(n-1)}{N}S^2_{wsy}$.
- 15 a Show that $V(\bar{y}_{lr}) = \frac{1-f}{n} S_y^2 (1-\rho^2)$ OR
 - b. Show that $V(\bar{y}_{lr}) = \frac{1-f}{n} [S_y^2 2b_0 S_{yx} + b_0^2 S_x^2]$