PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2024

(First Semester)

Branch - STATISTICS

REAL ANALYSIS AND LINEAR ALGEBRA

Maximum: 75 Marks Time: Three Hours

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EOUAL marks $(10 \times 1 = 10)$

		ALL questions carry EQUAL marks	10 × 1	
Module No.	Question No.	Question	K Level	СО
1	1	At which point, the function $f(x) = \frac{x^2 - 1}{x - 1}$ not continuous? (a) $x = 1$ (b) $x = 2$ (c) $x = -1$ (d) $x = 0$	K1	CO1
	2	The absolute maximum and minimum of a continuous function on a closed interval [a, b] always exist because (a) The function is differentiable (b) The function is increasing (c) The interval is closed and bounded (d) The function is linear	K2	CO1
2	3	A sequence whose range is a sub-set of R may be called a (a) Series (b) Sequence (c) Real Series (d) Real Sequence	K1	CO2
	4	If $a_1 + a_2 + \cdots$ converges to s, then $a_2 + a_3 + \cdots$ is converge to (a) s (b) a_1 (c) s - a_1 (d) s + a_1	K2	CO2
3	5	Which of the following is called first mean value theorem? (a) Every continuous function is differentiable (b) Every differentiable function is continuous (c) If a function is continuous on a closed interval [a,b] and differentiable on the open interval (a,b), then there exists at least one c in (a,b) such that f'(c)=0. (d) If f(a) = f(b), then there exists at least one c in (a,b) such that f'(c)=0.	K1	CO3
	6	If f is a bounded function on the closed bounded interval [a,b], we say that f is Riemann integrable on [a,b] if	K2	COS
4	7	Consider the following two subsets of vector space $V_2(R)$ $S_1 = \{(x_1, x_2)\} x_1 + x_2 \ge 0 \ S_2 = \{(x_1, x_2)\} x_1 + x_2 \le 1$ then which of the following is satisfied (a) S_1 be a subspace of $V_2(R)$ but not S_2 (b) S_2 be a subspace of $V_2(R)$ but not S_1 (c) Both S_1 and S_2 be a subspace of $V_2(R)$ (d) Neither S_1 nor S_2 in a subspace of $V_2(R)$	K1	CO
	8	Which of the following matrices is orthogonal? (a) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$	K2	СО
5	9	In the context of a square matrix A , an eigenvalue is a value λ that satisfies the equation (a) $Ax=x$ (b) $Ax=\lambda x$ (c) $A\lambda=x$ (d) $\lambda Ax=x$	K1	СО
	10	A quadratic form Q(x) is positive definite if (a) $Q(x) \ge 0$ for all x (b) $Q(x) < 0$ for all $x \ne 0$ (c) $Q(x) = 0$ for all $x \ne 0$ (d) $Q(x) > 0$ for all $x \ne 0$	K2	СО

SECTION - B (35 Marks)

Answer ALL questions
ALL questions carry EQUAL Marks

 $(5\times7=35)$

Module No.	Question No.	Question	K Level	со
1	11.a.	Prove that the function $f(x) = x^2$ is continuous but not uniformly continuous on the interval $S=(0,\infty)$		
	(OR)			CO1
	11.b.	Develop the short notes on maxima and minima of functions.		
2	12.a.	Prove that, if the sequence of real numbers $\{S_n\}_{n=1}^{\infty}$ is convergent to L , then $\{S_n\}_{n=1}^{\infty}$ cannot also converge to a limit distinct from L . That is, if $\lim_{n\to\infty} S_n = L$ and $\lim_{n\to\infty} S_n = M$,	К3	CO2
		then $L = M$. (OR)		
	12.b.	State and prove Dini's theorem.		
	13.a.	Let f be a bounded function on the closed bounded interval [a, b]. Then prove that $f \in \Re[a,b]$ if and only if f is continuous at almost every point in [a,b].	K5	CO3
3	(OR)			COS
	13.b.	Develope the properties of Riemann – Stieltjes integral functions.		
	14.a.	Prove that the intersection of any family of subspaces of a vector space V is a subspace of V.	K5	CO4
4		(OR)		1004
	14.b.	Discuss the short notes on Inner product space.		-
	15.a.	Describe the classification of the quadratic form.		
5	(OR)			
	15.b.	Prove that $h(\lambda_1), h(\lambda_2), \dots, h(\lambda_n)$ are the characteristic root of $h(A)$, if $\lambda_1, \lambda_2, \dots, \lambda_n$ be the characteristic roots of A and let $h(\lambda)$ be a rational function such that $h(A)$ is defined. Then prove that $h(\lambda_1), h(\lambda_2), \dots, h(\lambda_n)$ are the characteristic root of $h(A)$.	K4	CO5

SECTION -C (30 Marks) Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	со
1	16	State and prove Taylor's theorem. Also write its significance.	K5	CO1
2	17	 (i) State and prove Dirichlet's test. (ii) Prove that, if ∑_{n=1}[∞] a_n is a convergent series, then lim a_n = 0. 	K4	CO2
3	18	State and prove second mean value theorem.	K5	CO3
4	19	Prove that if $A = \{x_1, x_2, \dots x_k\}$ and $B = \{y_1, y_2, \dots y_{k+1}\}$ are linearly independent subsets of a vector space V, then there exists a $y_i \in B - A$ such that $A \cup \{y_i\}$ is linearly independent.	K4	CO4
5	20	State and prove Cayley-Hamilton theorem.	K5	CO5