PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

(AUTONOMOCS)

MSc DEGREE EXAMINATION MAY 2024

(Second Semester)

Branch - STATISTICS

ESTIMATION THEORY

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

 ALL questions carry EQUAL marks
 (10 × 1 = 10)

 Module No.
 Question
 K Level
 CO

 1
 Parameters are those constants which occur in:
 K1
 CO1

 (a) samples
 (b) probability density function
 K1
 CO1

 (c) a formula
 (d) none of the above
 Consistency can specifically be named as:

1			Parameters are those constants which occur in:	K1	CO1
		1	(a) samples (b) probability density function (c) a formula (d) none of the above	161	001
	-		(c) a formula (d) none of the above Consistency can specifically be named as:		
	-		Consistency can specifically be named as.		
		0	(a) simple consistency	K2	CO1
		2	(b) mean-squared consistency(c) simple consistency and mean squared consistency both		
			(1) all the charge		
			(d) all the above Crammer-Raw inequality with regard to the variance of an		
			estimator provides		
			(a) upper bound on the variance	TZ1	000
	1	3	(b) lower bound on the variance	K1	CO2
			(c) asymptotic variance of an estimator		
2			(d) name of the above		
			(d) none of the above Rao-Blackwell theorem enables us to obtain minimum		
			Kao-Blackwell dieoletti engoles as to obtain minimus		000
		4	variance unbiased estimator through: (a) unbiased estimators (b) complete statistics	K2	CO2
	İ				
			(c) efficient statistics (d) sufficient statistics Method of minimum Chi-squre for the estimation of		
			parameters utilizes:		
			(a) Chi-square distribution function	77.1	002
	Ì	5	(b) Pearson's Chi-square statistic	K1	CU3
			(b) Pearson's Chi-square statistic		
			(c) Contingency table (d) All the above		
3	-		By the method of moments one can estimate:		
			(a) all constants of a population		
		,	(b) only mean and variance of a distribution	K2	CO3
		6	(c) all moments of a population distribution		
			(d) all the above		
			Bayes approach is		
4		7	(a) universally accepted (b) a matter of controversy	K1	CO3 CO4 CO4
		1	(c) irrelevant (d) none of the above		
	-		Pitman's estimator for location parameters are generally:		
			(a) unbiased		
	I	0	(b) consistent	K2	CO4
		8	(c) a function of sufficient statistics		
			(d) none of the above		
			Confidence region tentamounts to estimation of:		
			(a) Confidence interval for a parameter of a distribution		
5			(b) confidence interval fro two or more parameters of a	K1	CO5
	5	9	population distribution	KI	005
			(c) both (a) and (b)		
			(1) ithou (a) mor (b)		

(d) neither (a) nor (b)

Cont...

22STP207N / 22STP207

Cont...

		THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NA			The second secon
5	10	Formula for the confident of two normal population (a) χ2- distribution (c) t-distribution	ce interval for the ratio of variances involves: (b) F-distribution (d) none of the above	K2	CO5

SECTION - B (35 Marks) Answer ALL questions

		ALL questions carry EQUAL Marks	(5 × 7 =	25)	
Module No.	Question No.	Question		CO	
	11.a.	Discuss the importance of Fisher information in finding a sufficient statistic.	Level		
1	(OR)				
	11.b.	Let X_1, X_2, X_3 be three independent observations on a random variable $X \sim B(1, \theta)$. Find that $T = X_1 + 2X_2 + 3X_3$ is not sufficient for θ .	K3	CO3	
	12.a.	State and prove Lehmann – Scheffe Theorem for convex loss function.	K4		
2		(OR)		CO4	
	12.b.	State and Prove the necessary and sufficient condition for unbiased estimator to be UMVUE.			
	13.a.	Describe the method of moments and illustrate with an example.			
3		(OR)			
	13.b.	Obtain the maximum likelihood estimators of the parameters of a normal distribution.	K5	CO5	
	14.a.	Show that the Bayes estimator of normal distribution with known variance, the posterior distribution of μ is $N(c/b, 1/b)$.			
4		(OR)	K5	CO4	
	14.b.	Write a note on Baye's estimation.	110	004	
	15.a.	Consider the normal distribution $N(\mu, \sigma^2)$ when σ^2 is known. Examine the confidence interval for μ .			
5	(OR)				
	15.b.	Test for the problem of constructing a simultaneous confidence region for mean μ and variance σ^2 of a normal distribution using a random sample of n observations.	K4	CO3	

SECTION -C (30 Marks)

Answer ANY THREE questions

Module Question ALL questions carry EQUAL Marks (3 × 10				
No.	No.	Question		СО
1	16	State and prove a sufficient condition for the consistency of an estimator.	Level K4	CO4
2	17	Derive Chapman - Robbin's inequality, using covariance inequality.	K5	CO5
3	18	Explain the method of maximum likelihood.	K5	CO5
4	19	Explain Bayesian estimation procedure with an example.	K4	CO4
5	20	Examine the theorem of the large sample method of constructing CIs which provides the shortest average width intervals asymptotically.	K5	CO4