PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2024

(First Semester)

Branch - STATISTICS

ADVANCED PROBABILITY THEORY

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Module No.	Question No.	Question	K Level	СО
1	1	If C is constant then $E(cX) = \underline{\hspace{1cm}}$. a) $E(Xc)$ b) $cE(X)$ c) $C^2E(X)$ d) $c + E(X)$	K1	CO1
	2	$E XY \le \sqrt{E X ^2 E Y ^2}$ is calledinequality. a)Schwartz b) Holder's c) C_r d) Murkowski	K2	CO1
2	3	If ϕ is the characteristic function of a general distribution function of F , then ϕ is a) Complex b) continuous c) unique d) converges	K1	CO2
	4	If $F_n o F$, then F is	K2	CO2
3	5	Two events A and B are said to be independent of $P(A \cap B) = $ a) $A P(B)$ b) $P(B)B$ c) $P(A) + P(B)$ d) $P(A)P(B)$	K1	CO3
	6	Borel function of independent random variables are . a) dependent b) independent c) zero d) one	K2	CO3
4	7	$X_n \xrightarrow{p} X$ and $X_n \xrightarrow{p} X' \Longrightarrow X$ and X' are a) equivalent b) converges c) zero d) different	K1	CO4
	8	$X_n \xrightarrow{L} X$ and $X_n \xrightarrow{L} C$, then $X_n Y_n \xrightarrow{L}$ a) $X + C$ b) X/C c) CX d) $C? X$	K2	CO4
5	9	The sequence of independent random variables WLLN hold if $\sum_{1}^{n} \frac{\sigma_{k}^{2}}{n^{2}} = V\left(\frac{S_{n}}{n^{2}}\right) \rightarrow \underline{\hspace{1cm}}$ a) 0 b) ∞ c) $-\infty$ d) 1	K1	CO5
	10	a) 0 b) ∞ c) $-\infty$ d) 1 If $\sum_{1}^{n} X_{k} = S_{n} \to S < \infty$ and $b_{n} \uparrow \infty$ then $\left(\frac{1}{b_{n}}\right) \sum_{1}^{n} b_{n} x_{k} \to \underline{\hspace{1cm}}$ a) ∞ b) $-\infty$ c) 0 d) 1	K2	CO5

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	со
1	11.a.	State and prove holder's inequality.	K2	
		(OR)		CO1
	11.b.	If $x > 0$ and is integrable, X can be infinite at most on a set of probability measure zero.		

22STP102N/22STP102 Cont...

				1
2	12.a.	Let $X_n \stackrel{L}{\to} X$ and for some $p > 0$ $\sup_n E X_n^p = M < \infty$. Then for all $r < p, E X_n^r \to E X_n ^r < \infty$ (OR)	K4	CO2
	12.b.	State and prove second limit theorem.		
	13.a.	If X_n 's are independent and $X_n \to 0$ (a, s) , then show that $\sum P[X_n \ge c] < \infty$ whatever be $c > 0$, finite.	K3	CO3
3		(OR)		003
	13.b.	Prove that sub classes of independent classes are independent.		
- 1	14.a.	$X_n \stackrel{p}{\to} 0 \text{ iff } E\left(\frac{ X_n }{(1+ X_n)}\right) \to 0 \text{ as } n \to \infty.$		
1		(OR)	- K5	CO4
4	14.b.	Let $X_n \stackrel{p}{\to} X$ and $Y_n \stackrel{p}{\to} Y$. Then prove that a) a $X_n \stackrel{p}{\to} aX$ (a, real) b) $X_n + Y_n \stackrel{p}{\to} X + Y$		
	15.a.	If $X'_n s$ are uniformly bounded and $\sum X_n$ converges a . s then $\sum \sigma_n^2$ and $\sum EX_n$ converge.	K5	CO5
5		(OR)	-	
	15.b.	State and prove that Lindeberg -Levy theorem.		

SECTION -C (30 Marks) Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module	Question No.	Question	K Level	СО
No.	16	State and prove C_r inequality.	K3	CO1
2	17	State and prove Bochner's theorem.	K4	CO2
3	18	State and prove Borel 0-1 law.	K4	CO3
4	19	Prove that $X_n \xrightarrow{p} X \Longrightarrow F_n(X) \to F(x), x \in C(f)$	K5	CO4
5	20	If $\sum \sigma^2 < \infty$ then $\sum_n X_n - E(X_n)$ converges a. s of X_n 's are a. s bounded, converges is also true and we have $\sum \sigma^2 < \infty \iff \sum (X_n - EX_n)$ converges.	K5	CO5