PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc(SS) DEGREE EXAMINATION MAY 2024 (Third Semester)

Branch - SOFTWARE SYSTEMS (five year integrated)

TRANSFORMATION TECHNIQUES

Time: Three Hours Maximum: 50 Marks

		SECTION-Answer AL			
		ALL questions car		$(5 \times 1 = 5)$	
1.					
	(a) $\int_{0}^{t} e^{-st} f(t) dt$	(b) $\int_{0}^{\infty} e^{-st} f(t) dt$			
	0	(d) $\int_{0}^{\infty} e^{st} f(t) dt$			
2.	Inverse Laplace tra	ansform of $\frac{3}{5}$ is			
	(a) e ^{3t}	(b) $e^{\frac{s}{-3t}}$	(c) 3t	(d) 3	
3.	(a) Kronecker delt	= 1, $k \in N$ is called a (b) Unit ramp	(c) Unit step		
4.	If $F(w)$ is the Fourier transform of $f(t)$ then $F[e^{jat}f(t)] = $				
	(a) $F(w-a)$ (1)	$F(w+a) \qquad \qquad (c)$	aF(w-a) (d	$\frac{1}{a}F(w-a)$	
5.	The circular cross correlation of two periodic sequences $f[n]$ and $g[n]$, each of period N is defined as				
	(a) $\sum_{m=0}^{\infty} f[m] g[m-n]$ for $n = 0, 1, 2, \dots, N-1$				
	(b) $\sum_{m=0}^{\infty} f[m] g[m-n]$ for $n = 0, 1, 2, \dots, \infty$				
	(c) $\sum_{m=0}^{N-1} f[m] g[m-n]$ for $n = 0, 1, 2, \dots, N-mn$				
	(d) $\sum_{m=0}^{N-1} f[m] g[m-1]$	-n] for $n = 0, 1, 2,$,N-1		
SECTION - B (15 Marks)					
	Answer ALL Questions ALL Questions Carry EQUAL Marks (5 x 3 = 15)				
6.	(a) Determine l	aplace transform of (i)	$\cos(\frac{4t}{})$ (ii) $\frac{\cos 7t}{}$		

- 6. (a) Determine Laplace transform of (i) $\cos(\frac{4t}{3})$ (ii) $\frac{\cos 7t}{e^{5t}}$. (OR)
 - (b) Verify Final value theorem for $f(t) = e^{-3t} cost + 5$.
- 7. (a) Find the inverse Laplace transform of (i) $\frac{s+1}{s^2+1}$ (ii) $\frac{2}{(s+1)^2}$.
 - (b) Find the inverse Laplace transform of $\frac{2s+3}{s^2+6s+13}$.

- Find the sequence whose z transform is $\frac{1}{z^2(z-1)^2}$. 8.
 - Use binomial theorem to expand $(1-\frac{1}{z})^{-3}$ upto the term $\frac{1}{z^4}$. Hence find the sequence with z transform $F(z) = \frac{z^3}{(z-1)^3}$.
- 9. Use the properties of the delta function to deduce its Fourier transform.

- Find the convolution of $f(t) = \begin{cases} \frac{2}{3}t & 0 \le t \le 3\\ 0 & otherwise \end{cases}$ and $g(t) = \begin{cases} 4 & -1 \le t \le 3\\ 0 & otherwise \end{cases}$ (b)
- Find the discrete fourier transform of the sequence f[n] = 1, 2, -5, 3. (OR)

(b) Find the linear convolution f * g where f[n] is the sequence 3, 9, 2, -1, and g[n] is the sequence -4, 8, 5.

SECTION -C (30 Marks) Answer ALL questions

 $(5 \times 6 = 30)$ ALL questions carry EQUAL Marks

State First shifting theorem. Find Laplace transform of $e^{-3t}t \sin 5t$. 11. (a)

- Given the Laplace transform of f(t) is F(s), f(0) = 2, f'(0) = 3 find the Laplace transform of 3f'' - f' + f
- Find $e^{-2t} * e^{-t}$. Use the convolution theorem to find the inverse Laplace transforms 12. (a)

- (b) Solve $x'' + 2x' + 2x = e^{-t}$, x(0) = x'(0) = 0 using Laplace transform.
- The sequence f(k) is defined by $f(k) = \begin{cases} 0 & k = 0,1,2,3 \\ 1 & k = 4,5,6,..... \end{cases}$ 13. (a)

Write down the sequence f[k + 1] and verify that

 $Z\{f[k+1]\} = zF(z) - zf[0]$ where F(z) is the z transform of f[k].

- Find the inverse z transform of $\frac{(2z^3+z)}{(z-3)^2(z-1)^2}$
- Find the Fourier transform of $f(t) = \begin{cases} 1 t^2 & |t| \le 1 \\ 0 & |t| > 1 \end{cases}$ 14. (a)
 - Calculate the correlation of $f(t) = u(t)e^{-t}$ and $g(t) = u(t)e^{-2t}$, where u(t) is the (b) unit step function. Also verify the correlation theorem for these functions.
- Find the matrix representing a three-point d.f.t. Also use the matrix to find d.f.t. of the 15. (a) sequence f[n] = 4, -7, 11.

(OR)

Supose f[n] = 7, 2, -3 and g[n] = 1, 9, -1. Assume both sequences f and g start at n=0. Find the linear cross-correlation f*g. Also develop a graphical interpretation of this process.