PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc(SS) DEGREE EXAMINATION MAY 2024

(Fourth Semester)

Branch - SOFTWARE SYSTEMS (five year integrated)

OPTIMIZATION TECHNIQUES

Ti	me: Three Hours					Maxi	mum: 50 Marks	
			SECTIO	ON-A (5 Ma	rks)			
				ALL quest				
		AL	L question	s carry EQU	JAL marks	s (5	x 1 = 5	
1.	A constraint in a Li		-					
	(i) an equation	with = s	gn	(ii)	inequality	with ≥ sign		
	(iii) inequality v			(iv)	any of the	above		
2. The minimum number of lines covering all zeros in a reduced cost matrix of or							order n can be	
	(i) at the most				at the leas			
	(iii) $n-1$			(iv)	n+1			
3.	When maximin and	minimax	values of th	ne game are	same, their	n .		
٥.	(i) there is a sa					loes not exist		
	(iii) strategies an	-			none of th			
4	When there are mor	e than one	servers, ci	stomer beh	avior in w	hich he moves	from one queue	
	to another is known						•	
	(i) balking			(ii)	jockeying			
	(iii) reneging				alternating	g		
5.	The slack for an act (i) LS-ES	ivity in ne	twork is ea	ual to				
	(i) LS-ES			(ii)	LF-LS			
	(iii) EF-ES			(iv)	EF-LS			
			SECTIO	N - B (15 M	arks)			
				ALL Quest				
		ALL O		arry EQUA		(5 x	3 = 15	
6.	a) State some signi					(
0.	u) blate some sign	a) State some significant features of Operations Research. (OR)						
	b) Old hens can be	bought fo	r Rs.2.00 e	ach and you	ing ones co	ost Rs.5.00 eac	h. The old hens	
	lay 3 eggs per w	eek and th	e young on	es 5 eggs pe	r week, ea	ch being worth	30 paise. A hen	
	costs Rs.1.00 to	feed. If I	have only	Rs.80.00 to	spend for	hens, how ma	ny of each kind	
	should I buy to	give a pro	ofit of more	than 6.00	per week,	assuming that	I cannot nouse	
	more than 20 he	ns? write	a mamema	iicai modei	or the prot	olem,		
~				- 4- 41- C-11			alom by north	
7.	 a) Obtain an initial west corner rule. 	basic feas	ible solutio	n to the foli	owing tran	isportation pro	olem by norm-	
	west comer rule.	D	Е	F	G	Available		
	A	11	13	17	14	250		
	В	16	18	14	10	300		
	C	21	24	13	10	400		
	Requirement	200	225	275	250			
				(OR)		0 1 771	1 1	
	b) A departmental h	ead has 4	subordinate	s and 4 task	s to be per	rformed. The si	ubordinates	
	differ in efficience	y and the	tasks differ	in their intr	in the ma	culty. His estim	w should the	
	each man would	take to per	Ionn each	rask is giver	I III LIIC III	idix below. 110	TO SHOULD THE	

Tasks		M	en	
	E	F	G	H
A	18	26	17	11
В	13	28	14	26
C	18	19	18	15
D	19	26	24	10

tasks be allocated, one to a man so as to minimize the total man-hours?

a) Determine the range of values of p and q that will make the pay-off element a_{22} , a saddle 8. point for the game whose pay-off matrix (a_{ij}) is given below:

- b) Consider a modified form of matching biased coins game problem. The matching player is paid Rs.8.00 if the two coins turn both heads and Re.1.00 if the coins turn both tails. The non-matching player is paid Rs.3.00 when the 2 coins do not match. Give the choice of being the matching or non-matching player. Which one would you choose and what would be your strategy?
- 9. a) A TV repairman finds that the time spent on his jobs has an Exponential distribution mean 30 minutes. If he repairs sets in the order in which they come in, and if the arrival of sets is approximately Poisson with an average rate of 10 per 8-hour day, what is the repairman's expected idle time each day? How many jobs are ahead of the average set just brought-in?

(OR)

- b) In a railway marshalling yard, goods train arrive at a rate of 30 trains per day. Assuming that the inter-arrival time follows an exponential distribution and the service time distribution is also exponential with an average 36 minutes, calculate the following:
 - (i) the mean queue size, and
 - (ii) the probability that the queue size exceeds 10.

If the input of the train increases to an average 33 per day, what will be the change in (i) and (ii)?

10. a) Construct a network diagram for the following data:

J H T G Activity G H.I D,F C A B,E B None Preceding Activities: (OR)

b) State the rules of constructing the network.

SECTION -C (30 Marks)

Answer ALL questions

 $(5 \times 6 = 30)$ ALL questions carry EQUAL Marks

11. a) Consider the following linear programming problem:

Maximize $z = 2x_1 + 4x_2$, subject to the constraints

 $x_1 + 2x_2 \le 5$; $x_1 + x_2 \le 4$; $x_1 \ge 0$; $x_2 \ge 0$.

Demonstrate whether it is possible to get a unique solution to the above linear programming problem graphically.

(OR)

b) Use simplex method to maximize $z = 4x_1 + 10x_2$ subject to the constraints $2x_1 + x_2 \le 50$; $2x_1 + 5x_2 \le 100$; $2x_1 + 3x_2 \le 90$; $x_1 \ge 0$; $x_2 \ge 0$.

12. a) Determine the initial basic feasible solution to the following transportation problem using Vogel's Approximation method, given the cost matrix:

gel's Approxin	nation method D1	D2	D3	D4	SUPPLY
	20	25	28	31	200
S1	32	28	32	41	180
S2	18	35	24	32	110
S3 DEMAND	150	40	180	170	

(OR)

b) A machine operator processes five types of items on his machine each week, and must choose a sequence for them. The set-up cost per change depends on the item presently on the machine and the set-up to be made according to the following table:

From item	and the set-up to be made according to the following table. To item				
riom nem _	Δ	В	C	D	E
Λ	00	4	7	3	4
D D	4	00	6	3	4
С	7	6	00	7	5
D	3	3	7	00	7
D			_	7	00
E	4	4	3	,	-

Determine the optimum solution.

13. a) Solve the game whose pay-off matrix is:

Borve the Banne wheel	Play	Player B			
Player A $ \begin{pmatrix} 4 \\ 1 \\ -2 \end{pmatrix} $	-2 2 1	3 0 -2	$\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$		
	(OR)				

- b) Two firms A and B have for years been selling a competitive product which forms a part of both firms' total sales. The marketing executive of firm A raised the question, "What should be the firm's strategies in terms of advertising the product in the market?" The market research team of firm A developed the following data for varying degrees of advertising:
- (i) No advertising, medium advertising and large advertising for both firms will result in equal shares
- (ii) Firm A with no advertising: 40% of the market with medium advertising by firm B and 25% of the market with large advertising by firm B.
- (iii) Firm A using medium advertising: 70% of the market with no advertising by firm B and 45% of the market with large advertising by firm B.
- (iv) Firm A using large advertising: 75% of the market with no advertising by firm B and 47.5% of the market with medium advertising by firm B.
- (A) Based upon the foregoing information, answer the marketing executive's questions.
- (B) What advertising policy should firm A pursue when consideration is given to the above factors: selling price Rs. 4 per unit; variable cost of product Rs. 2.50 per unit; annual volume of 30,000 units from firm A: cost of annual medium advertising Rs. 5,000 and cost of annual large advertising Rs. 15,000? What contributions to the other fixed costs is available to the firm?
- 14. a) A bank has two tellers working on savings accounts. The first teller handles withdrawals only. The second teller handles deposits only. It has been found that the service time distribution for both deposits and withdrawals is exponential with mean service time 3 minutes per customer. Depositors are found to arrive in Poisson fashion throughout the day with mean arrival rate of 16 per hour. Withdrawers also arrive in Poisson fashion with mean arrival rate of 14 per hour. What would be the effect on the average waiting time for the depositors and withdrawers if each teller could handle both withdrawals and deposits?

Q. No 14 Cont ...

- 14. b) A car servicing station has 3 stalls where service can be offered simultaneously. The cars wait in such a way that when a stall becomes vacant, the car at the head of the line pulls up to it. The station can accommodate at most four cars waiting at one time. The arrival pattern is Poisson with a mean of one car per minute during the peak hour.

 The service time is exponential with mean 6 minutes. Find the average number of cars in the service station during peak hours, the average waiting time and the average number of cars per hour that cannot enter the station because of full capacity.
- 15. a) A project consists of a series of tasks labelled A, B, ... H, I with the following relationship. Construct the network diagram having the following constraints:

 A < D, E; B, D < F; C < G; B, G < H; F, G < I

 Find also the minimum time of completion of the project, when the time (in days) of completion of each task is as following:

E G Task: B C A 19 4 10 24 18 Time: 23 8 20 16

(OR)

b) Distinguish between PERT and CPM.

Z-Z-Z END