PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc(SS) DEGREE EXAMINATION MAY 2024 (Second Semester)

Branch - SOFTWARE SYSTEMS (five year integrated)

DATA STRUCTURES AND ALGORITHMS

Time: Three Hours Maximum: 75 Marks

SECTION - A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Module No.	Question No.	Question	K Level	СО
1	1	The efficiency of a sequential search is a) O(n) b) O(n*n). c) O(log2 n) d) O(n*n*n)	K1	CO2
	2	In hashing, the key is squared and the address is selected from the middle of the result. a) direct b) mid square c) subtraction d) digit extraction	K2	CO1
2	3	A list is a linked list with two or more logical lists. a) circular b) double linked c) multi linked d) Single linked	K1	CO3
	4	a linked list means going through the list, node by node and processing each node. a) search b) insert c) delete d) traversing	K2	CO3
3	5	is an ordered list in which all insertions and deletions are made at one end called top. a) Queue b) Trees c) Graphs d) Stack	K1	CO4
	6	Which data structure allows deleting data elements from front and inserting at rear? a) Stacks b) Queues c) Dequeue d) Binary search tree	K2	CO4
4	7	With traversal, before visiting the root node, left subtree of the root node is to be visited then root node and after the visit of the root node right sub-tree of the root node will be visited. a) preorder	K1	CO5
	8	An is a binary tree which stores an arithmetic expression. a) Heap tree b) Huffman tree c) Expression tree d) Decision tree	K2	CO5
5	9	A graph if it does not have any self loop or parallel edges is called graph. a) simple b) complete c) weighted d) connected	K1	CO3
	10	A graph is said to be if each vertex vi is adjacent to every other vertex vj in G. a) simple b) complete c) weighted d) connected	K2	CO3

SECTION - B (35 Marks)

Answer ALL questions
ALL questions carry EQUAL Marks

 $(5\times7=35)$

Module No.	Question No.	Question	K Level	СО
1	11.a.	Discover the different types of asymptotic notation with example.		
	(OR)		K4	CO1
	11.b.	Summarize the basic concept of sparse matrix.		
2	12.a.	Distinguish between the single and double ended priority queues.	K5	
		(OR)		CO2
	12.b.	Illustrate the sequential implementation of stacks.		
3	13.a.	Develop a procedure to add and delete an element to a stack.		
	(OR)		K6	CO3
	13.b.	Evaluate the algorithm for inorder traversal of a binary tree.		
4	14.a.	Discuss the insertion and deletion of elements of binary search trees.	K5	COA
	(OR)			CO4
	14.b.	Assume the terminologies of graphs.		
5	15.a.	Elaborate the different types of hash function.		
	(OR)		K6	CO5
	15.b.	Develop a procedure for heap sort with example.		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	СО
1	16	Estimate the representation of multidimensional arrays.	K6	CO1
2	17	Demonstrate the algorithm for priority queues with example.	K6	CO2
3	18	Evaluate the implementation of circularly linked lists.	K5	CO4
4	19	Compare the depth first search and breadth first search.	K4	CO4
5	20	Assume the various techniques used in collision resolution.	K6	CO5