PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc(SS) DEGREE EXAMINATION MAY 2024

(First Semester)

Branch - SOFTWARE SYSTEMS (five year integrated)

CALCULUS AND ITS APPLICATIONS

Maximum: 75 Marks Time: Three Hours

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

- Find the integer floor function value of [-1.2]. 1
- (ii) -1
- (iv) 2
- Identify $\frac{dy}{dx}$ using fundamental theorem if $y = \int_a^x (t^3 + 1) dt$. (ii) $x^3 - 1$ (iii) $\frac{x^4}{4}$

- (iv) $x^3 + 1$
- When the series $\lim_{n\to\infty} \left(\frac{a_{n+1}}{a_n}\right) = \rho$ converges if and only if 3

(iii) $\rho = 1$

- Name the test for the series $\sum_{n=1}^{\infty} \frac{2n+1}{n^2+2n+1}$ to prove diverges.

 (i) Absolute Convergence Test (ii) The Ratio Test (iii) Limit Comparison Test (iv) The Root Test 4
- (iii) Limit Comparison Test
- Find the value of $\frac{\partial f}{\partial x}$ at the point (4,-5) if $f(x,y) = x^2 + 3xy + y 1$. 5
- (ii) 6

- Identify the interior point of the function $f(x,y) = 2 + 2x + 2y x^2 y^2$. 6
 - (i) (0,1)
- (ii) (1,1)
- (iii)(1,0)
- Which equation plays an important role in Population dynamics?
 - (i) Logistic equation
- (ii) Dynamic equation
- (iii) Homogeneous equation
- (iv) Continuity equation
- Choose the following equation which satisfies linearly independent on 8

 $y_1 = x^2$, $y_2 = 5x$, $y_3 = 2x$

- (ii) $y_2 = 0y_1 + 2.5y_3$
- (i) $y_1 = y_2 + 2y_3$ (iii) $y_3 = 0y_1 + 2y_2$
- (iv) $y_1 = y_2 + y_3$
- Find a_0 in the Fourier Series. 9
 - $(i) \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$
- (iii) $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$
- (ii) $\frac{1}{2\pi} \int_0^{\pi} f(x) dx$
(iv) $\frac{1}{\pi} \int_0^{2\pi} f(x) dx$
- Identify RLC Circuit governed ODE equations. 10
 - (i) $LI'' + RI' + \frac{1}{c}I = E'(t)$ (ii) $LI'' + I' \frac{1}{c}I = E'(t)$
 - (iii) LI'' + RI' + CI = E'(t)
- (iv) $LI'' + RI' \frac{1}{c}I = E(t)$

SECTION - B (25 Marks)

Answer ALL questions ALL questions carry EQUAL Marks

 $(5 \times 5 = 25)$

11 a Sketch the function $y = x^2$ over the interval [-2,2].

b Determine the value of $\lim_{n\to 0} \frac{\sin 2x}{5x}$ and also examine $\lim_{t\to 0} \frac{\tan t \sec 2t}{3t}$.

- 12 a Analyze the sequence whose nth term is $a_{n=} \left(\frac{n+1}{n-1}\right)^n$ converges? And also find $\lim_{n\to\infty} a_n$.
 - b Evaluate the Taylor series generated by $f(x) = \frac{1}{x}$ at a = 2 and also find if any where does the series converges to -
- Determine $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at (0,0,0) if $x^3 + z^2 + ye^{xz} + z\cos y = 0$.
 - b Sketch and find the tangent plane and normal line of the surface $f(x, y, z) = x^2 + y^2 + z - 9 = 0$ at the point (1,2,4).
- 14 a Solve $2xyy' = y^2 x^2$ using extended method of reduction to separable form.
 - b Evaluate the fourth order ODE $y^{iv} 5y'' + 4y = 0$.
- Show the Fourier series of the function $f(x) = \begin{cases} -k & \text{if } -2 < x < 0 \\ k & \text{if } 0 < x < 2 \end{cases}$ p = 2L = 4, L = 2.
 - Analyze the minimum square error E of F(x) with $N = 1, 2 \dots 10, 20, \dots 100$ and 1000 relative to $f(x) = x + \pi(-\pi < x < \pi)$ on the interval $-\pi \le x \le \pi$.

SECTION -C (40 Marks)

Answer ALL questions

 $(5 \times 8 = 40)$ ALL questions carry EQUAL Marks

- 16 a Evaluate (i) $\lim_{x \to 1} \frac{x^2 + x 2}{x^2 x}$ (ii) $\lim_{x \to 0} \frac{\sqrt{x^2 + 100} 10}{x^2}$.
 - b Interpret the scenario of a heavy rock blown straight up from the ground by a dynamite blast. The Velocity of the rock at any time t during its motion was given as v(t) = 16032t ft/sec. Find the displacement of the rock during the time period $0 \le t \le 8$ and also calculate the total distance travelled during this time period.
- 17 a Assess the convergence of the following series (i) $\sum_{n=1}^{\infty} \frac{(2n)!}{n! \, n!}$ (ii) $\sum_{n=1}^{\infty} \frac{4^n n! \, n!}{(2n)!}$

- Determine the first few terms of the Taylor series for the given function using power series operations (i) $\frac{1}{3}(2x + x \cos x)$ (ii) $e^x \cos x$.
- 18 a Evaluate $\lim_{(x,y)\to(0,0)} \frac{4xy^2}{x^2+y^2}$ if it exists.

- b Find the greatest and smallest values that the function f(x, y) = xy takes on the ellipse $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$
- 19 a Solve $\cos(x + y) dx + (3y^2 + 2y + \cos(x + y)) dy = 0$.
 - Formulate the Fourier Cosine and Sine integrals of $f(x) = e^{-kx}$ where x > 0 and k > 0.
- Determine the two-half range expansion of the function

 $f(x) = \begin{cases} \frac{2k}{L}x & \text{if } 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L - x) & \text{if } \frac{L}{2} < x < L \end{cases}.$

b Develop the Fourier series for $f(x) = x^2$ in $-\pi < x < \pi$. Hence show that $\frac{1}{44} + \frac{1}{24} + \frac{1}{34} + \cdots = \frac{\pi^4}{90}$ using Parswal's Theorem.

Z-Z-Z