PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc(SS) DEGREE EXAMINATION MAY 2024

(Fourth Semester)

Branch - SOFTWARE SYSTEMS (five year integrated)

APPLIED LINEAR ALGEBRA

Time: Three Hours Maximum: 50 Marks

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(5 \times 1 = 5)$

- 1. The homogenous equation AX = 0 has a _____ solution if and only if the equation has at least one free variable.
 - (i) trivial

(ii) non-trivial

(iii) finite

- (iv) infinite
- 2. The linear combination of (1,2,-1) and (16,4,2) is ____.
 - (i) (9,2,7)

(ii) (4, -1, 8)

(iii) both (i) & (ii)

- (iv) none of these
- 3. If A is orthogonal, then |A| =___.
 - (i) 0

(ii) ±1

(iii) ± 2

- (iv) ±∞
- 4. Two similar matrices have same ____
 - (i) determinant

(ii) rank

(iii) nullity

- (iv) all the above
- 5. The nature of the quadratic form $Q(x) = 3x_1^2 + 2x_2^2 + x_3^2 + 4x_1x_2 + 4x_2x_3$ is _____.
 - (i) positive definite

(ii) positive semi-definite

(iii) indefinite

(iv) negative definite

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

6. a) List the general solution of the linear system whose augmented matrix has been reduced to $\begin{bmatrix} 1 & 6 & 2 & -5 & -2 & -4 \end{bmatrix}$

 $\begin{bmatrix} 1 & 6 & 2 & -5 & -2 & -4 \\ 0 & 0 & 2 & -8 & -1 & 3 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{bmatrix}$

b) Let $a_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$, $a_2 = \begin{bmatrix} 5 \\ -13 \\ -3 \end{bmatrix}$ and $b = \begin{bmatrix} (OR) \\ -3 \\ 8 \\ 1 \end{bmatrix}$. Then span $\{a_1, a_2\}$ is a plane through the origin in \mathbb{R}^3 . Is b in the plane? -Examine.

7. a) Investigate whether $v_1(1,1,2)$, $v_2=(1,0,1)$, $v_3=(2,1,3)$ span the vector space \mathbb{R}^3 . (OR)

b) Deduce that $f_1 = 1$, $f_2 = e^x$, $f_3 = e^{2x}$ form a linearly independent set of vectors in $C^2[-\infty,\infty]$.

8. a) Let \mathbb{R}^4 have the Euclidean inner product. Calculate the cosine of the angle θ between the vectors u = (4,3,1,-2), v = (-2,1,2,3).

b) Sketch the unit circle in an xy-coordinate system in \mathbb{R}^2 using the weighted Euclidean inner product $\langle u, v \rangle = \frac{1}{2} u_1 v_1 + \frac{1}{4} u_2 v_2$.

9. a) Consider the basis $S = \{v_1, v_2, v_3\}$ for \mathbb{R}^3 , where $v_1 = (1,1,1), v_2 = (1,1,0), v_3 = (1,0,0)$. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$, be the linear transformation such that $T(v_1) = (1,0)$, $T(v_2) = (2,-1), T(v_3) = (4,3)$. Find a formula for $T(x_1, x_2, x_3)$ and hence compute T(2,-3,5).

b) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 \\ -2x_1 + 4x_2 \end{bmatrix}$. Find det(T) with respect to the basis $B' = \{u_1, u_2\}$ where $u_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, u_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Cont...

10. a) Estimate the eigenvalues and their multiplicities of
$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
:

b) Let $A = \begin{bmatrix} 7 & 2 \\ -6 & 1 \end{bmatrix}$. Derive a formula for A^k given $A = PDP^{-1}$ where $P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$ and $D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$

SECTION -C (30 Marks)

Answer ALL questions
ALL questions carry EQUAL Marks (5 x 6 = 30)

11. a) Identify all the solutions of
$$AX = b$$
 where $A = \begin{bmatrix} 3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{bmatrix}$ and $b = \begin{bmatrix} 7 \\ -1 \\ -4 \end{bmatrix}$.

b) Find LU decomposition of the coefficient matrix $\begin{bmatrix} 2 & 6 & 2 \\ -3 & -8 & 0 \\ 4 & 9 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$

- 12. a) The set $S = \{v_1, v_2, v_3\}$ where $v_1 = (1,2,1), v_2 = (2,9,0), v_3 = (3,3,4)$ is a basis for \mathbb{R}^3 .

 Justify.
 - b) Determine the rank, nullity and hence the dimension of the matrix

$$A = \begin{bmatrix} -1 & 2 & 0 & 4 & 5 & -3 \\ 3 & -7 & 2 & 0 & 1 & 4 \\ 2 & -5 & 2 & 4 & 6 & 1 \\ 4 & -9 & 2 & -4 & -4 & 7 \end{bmatrix}$$

13. a) Consider the vector space \mathbb{R}^3 with the Euclidean inner product. Apply the Gram Schmidt process to transform the basis vectors $u_1 = (1,1,1), u_2 = (0,1,1), u_3 = (0,0,1)$ into an orthogonal basis $\{v_1, v_2, v_3\}$. Then normalize the orthogonal basis vectors to obtain an orthonormal basis $\{q_1, q_2, q_3\}$.

b) Find the QR decomposition of $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$.

14. a) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_2 \\ -5x_1 + 13x_2 \\ -7x_1 + 16x_2 \end{bmatrix}$.

Determine the matrix for the transformation T with respect to the (i) standard basis and (ii) basis $B = \{u_1, u_2\}$ for \mathbb{R}^2 and $B'\{v_1, v_2, v_3\}$ for \mathbb{R}^3 where $u_1 = \binom{3}{1}$, $u_2 = \binom{5}{2}$,

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, v_2 = \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}.$$
 (O)

- b) Evaluate the eigenvalues and basis for the Eigen spaces of the linear operator $T: P_2 \to P_2$ defined by $T(a + bx + cx^2) = -2c + (a + 2b + c)x + (a + 3c)x^2$.
- 15. a) Orthogonally diagonalize the matrix $A = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$ whose characterisetic equation is $(\lambda 7)^2(\lambda + 2) = 0$.
 - b) Compute the singular value decomposition of $A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$.