PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2024

(Fourth Semester)

Branch - MATHEMATICS

OPERATOR THEORY

Maximum: 50 Marks Time: Three Hours

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(5 \times 1 = 5)$

- operator. If $T^*T = TT^*$, then T is called 1
 - (i) normal

(ii) unitary

(iii) isometry

- (iv) projections
- Let A and B be normal operators. If AX = XB holds for some operator X, then 2
 - (i) $A^*X = XB$

(ii) $A^*X = XB^*$

(iii) $AX = X^*B$

- (iv) $AX = XB^*$
- If $T \ge cI$ for some c > 0, then T is
 - (i) closed

(ii) self-adjoint

(iii) invertible

- (iv) normal
- An operator T on a Hilbert space H is said to be a paranormal operator if 4 for any unit vector $x \in H$.
 - (i) $||T^2x|| = ||Tx||^2$

(ii) $||T^2x|| \le ||Tx||^2$

(iii) $||T^2x|| \neq ||Tx||^2$

- (iv) $||T^2x|| \ge ||Tx||^2$
- $A \ge B \ge 0$ ensures _____ for any $\alpha \in [0,1]$. 5
 - (i) $A^{\alpha} \geq B^{\alpha}$

(ii) $A^{\alpha} \leq B^{\alpha}$

(iii) $A^{\alpha} > B^{\alpha}$

(iv) $A^{\alpha} < B^{\alpha}$

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 3 = 15)$

- For any linear operator T on a Hilbert space H, prove that the following 6 a statements are mutually equivalent:
 - (i) T is bounded.
 - (ii) T is continuous on the whole space H.
 - (iii) T is continuous on some point Xo on H.

- State and prove the Generalized Schwarz inequality. b
- 7 Show that
 - (i) An operator U on a Hilbert space H is an isometry operator if and only if $U^*U = I$.
 - (ii) An operator U on a Hilbert space H is an unitary operator if and only if $U^*U=UU^*=I.$

- Let T = U|T| be the polar decomposition of an operator T. Then prove that T = U|T| is quasinormal if and only if U|T| = |T|U.
- If T is an operator such that ||I T|| < 1, then prove that T is invertible. 8 a
 - Let $\sigma(T)$ be the spectrum of an invertible operator T, then prove that b $\sigma(T^{-1}) = {\sigma(T)}^{-1}.$

9 a If T is a paranormal operator, then prove that the following properties hold:

(i) T^n is also paranormal for any natural number n.

(ii) T is normaloid operator, that is, ||T|| = r(T).

(iii) If T is an invertible paranormal operator, so is T^{-1} .

OR

- Show that an operator T is convexoid if and only if $(\Sigma \theta) \operatorname{Re}\Sigma(e^{i\theta}T) = \Sigma(\operatorname{Re}(e^{i\theta}T))$ for any $0 \le \theta \le 2\pi$, where $\Sigma(S)$ denotes $\operatorname{co}\sigma(S)$.
- 10 a Analyze the statement of Young inequality, by providing its proof.
 - b Analyze Lowner-Heinz inequality, by proving it.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

- 11 a If T is an operator on a Hilbert space H over the complex scalars C, then prove that the following (i), (ii), (iii) and (iv) hold:
 - (i) T is normal if and only if $||Tx|| = ||T^*x||$ for all $x \in H$.
 - (ii) T is self-adjoint if and only if (Tx, x) is real for all $x \in H$.
 - (iii) T is unitary if and only if $||Tx|| = ||T^*x|| = ||x||$ for all $x \in H$.
 - (iv) T is hyponormal if and only if $||Tx|| \ge ||T^*x||$ for all $x \in H$.

OR

- b Let P₁ and P₂ be two projections onto M₁ and M₂, respectively. Then show that
 (i) P = P₁ + P₂ is a projection if and only if M₁ ⊥ M₂.
 (ii) If P = P₁ + P₂ is a projection, then P is the projection onto M₁⊕M₂.
- 12 a Let M be a dense subspace of a normed space X. Let T be a linear operator from M to a Banach space Y. If T is bounded, then prove that there uniquely exists \overline{T} which is the extension of T from X to Y, that is, $\overline{T}x = Tx$ for all $x \in M$ and $\|\overline{T}\| = \|T\|$.

OR

- b Let T be a normal operator. Then there exists a unitary operator U such that T = UP = PU and both U and P commute with V^* , V and |A| of the polar decomposition A = V|A| of any operator A commuting with T and T^* .
- 13 a State and prove Toeplitz-Hausdorff theorem.

OR

- b State and prove Power inequality of w(T).
- 14 a Prove that the following inclusion relations hold:

 Self-adjoint ⊆ Normal ⊆ Quasinormal ⊆ Subnormal ⊆ Hyponormal ⊆ Paranormal

 ⊆ Normaloid ⊆ Spectraloid.

OR

- b Prove that an operator T is convexoid if and only if $T \lambda$ is spectraloid for all complex number λ .
- 15 a State and prove the Holder-McCarthy inequality.

OR

b State and prove the Furuta inequality.