PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2024

(Second Semester)

Branch - MATHEMATICS

MEASURE THEORY

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Module No.	Question No.	Question	K Level	со
1	1	Which is a measurable set? (a) Open Set (b) Closed Set (c) Borel Set (d) All the above	K1	CO1
	2	The set E is Lebesgue's measurable if for each set A, $m^*(A)=$ $m^*(A\cap E)$ (b) $m^*(A\cap E) + m^*(A\cap E^c)$ (c) $m^*(A\cap E^c)$ (d) $m^*(A\cap E) - m^*(A\cap E^c)$	K2	CO1
2	3	Let f be bounded and let f and $ f $ be Riemann integral on $(-\infty,\infty)$ then (a) f is integrable (b) $\int_{-\infty}^{\infty} f dx = R \int_{-\infty}^{\infty} f dx$ (c) a &b (d) $\int_{-\infty}^{\infty} f dx \neq R \int_{-\infty}^{\infty} f dx$	K1	CO2
	4	$\int_{0}^{1} \left(\frac{\log x}{1-x}\right)^{2} dx = \underline{\qquad}.$ (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi^{2}}{4}$ (d) $\frac{\pi^{2}}{3}$	K2	CO2
3	5	A measure μ on R is if when ever $E \in R$, $F \subseteq E$ and $\mu(E) = 0$ then $F \in R$. (a) ring (b) σ -ring (c) σ -finite (d) complete	K1	CO3
	6	Let A, B be subsets of a set C, let $A, B, C \in R$ and let μ be a measure on R, i $\mu(A) = \mu(C) < \infty$ then $\mu(A \cap B) = \underline{\hspace{1cm}}.$ (a) $\mu(A)$ (b) $\mu(B)$ (c) $\mu(C)$ (d) $\mu(A \cup B)$	K2	CO3
4	7	Let $f, g \in L^p(\mu)$ and let a, b be constants, then $(a) af + bg \in L^p(\mu) \qquad (b) af \in L^p(\mu)$ $(c) af = a f \qquad (d) all$	K2	CO4
	8	$ f + g _{\infty} \le \underline{\qquad}.$ (a) $ f _{\infty} + g _{\infty}$ (b) $ f _{1} + g _{\infty}$ (c) $ f _{1} + g _{1}$ (d) $ f _{1} - g _{1}$	K2	CO4
5	9	A countable union of sets positive with respect to a signed measure v is a (a) Null set (b) negative set (c) positive set (d) none		COS
	10	A set v defined on a measurable space $[X,S]$ is said to be a (a) Signed measure (b) measure (c) Hahn decomposition (d) Jordan decomposition	K1	COS

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

ALL questions carry EQUAL Marks (5 11 50)							
Module No.	Question No.	Question	K Level	со			
1	11.a.	Prove that every integral is measurable.					
	(OR)		K3	CO1			
	11.b.	Prove that for any sequence of sets $\{E_i\}$, $m^*\left(\bigcup_{i=1}^{\infty} E_i\right) \leq \sum_{i=1}^{\infty} m^*\left(E_i\right)$	KJ	COI			
	12.a.	Make use the basic concepts, state and prove Lebesgue's Dominated convergence theorem.					
	(OR)			CO2			
2	12.b.	Use the logical arguments, Show that $\int_{0}^{\infty} \frac{\sin t}{e^{t} - x} dt = \sum_{n=1}^{\infty} \frac{x^{n-1}}{n^{2} + 1} , -1 \le x \le 1$	К3				
3	13.a.	Let μ^* be the outer measure on H(R) defined by μ on R then prove that S* contains S(R), the σ -ring generated by R.	9				
	(OR)						
	13.b.	Prove that the outer measure μ^* on H(R) defined by μ on R by $\mu^*(E) = \inf[\sum_{n=1}^{\infty} \mu(E_n) : E_n \in R, n = 1,2,3,4,, E \subseteq \bigcup_{n=1}^{\infty} E_n] \text{ and the corresponding outer measure defined by } \mu$ on S(R) and μ on S* are the same.	K4	CO3			
	14.a.	Analyze the statement of Minkowski's inequality.					
4	(OR) A palyze that every function convex on an open interval is continuous		K4	CO4			
	14.b.		-	+			
5	15.a.	Criticize the statement of Jordan decomposition theorem. (OR)					
	15.b.	Justify the statement. let v be a signed measure on the measurable space (X, B) then there is a positive set A and a negative set B such that $X = AUB$ and $A \cap B = \phi$. The pair A,B is said to be Hahn decomposition of X with respect to v. it is unique to the extent that if A_1, B_1 and A_2, B_2 are Hahn decompositions of X with respect to v then $A_1 \Delta A_2$ is a v-null set.		CO5			

SECTION -C (30 Marks) Answer ANY THREE questions

ALL questions carry EQUAL Marks (3 × 10 = 30)

| Module | Question | Question

Z-Z-Z

Module No.	No.	Question	Level	CO
1	16	Prove that the outer measure of an interval equals its length.	K5	CO1
2	17	State and prove Fatou's lemma.	K5	CO2
3	18	Analyze the statement. Let μ^* be an outer measure on H® and let S* denote the class of μ^* measurable sets. Then S* is a σ -ring and μ^* restricted to S* is a complete measure.	K4	CO3
4	19	Analyze the statement ofss Jensen's inequality by providing its proof.	K4	CO4
5	20	Analyze the statement of Radon-Nikodym theorem, by proving it.	K4	CO5